4)Так как корень находится в знаменатели ,то подкоренное выражение не должно быть равно нулю ,то есть будет строгое неравенство 4+8x>0⇒x>-1/2
5)Знаменатели обеих дробей не равны нулю ,то есть x≠0 и x≠±4
6)Знаменатель не равен нулю ,то есть x²+1≠0⇔x²≠-1⇒любое действительное число
varvv15
20.04.2020
Решим сперва ваш пример: и т.к. у логарифмов основание одинаковое, то мы имеем право опустить логарифм и сравнивать уже по его числу 5 и 3 следовательно... теперь рассмотрим более сложный пример и и умножим обе части на и надо бы не забыть поменять в этом месте знак неравенства. и и и прибавим к обеим частям и т.к. у логарифмов одинаковое основание, то их можно опустить 500 и 480 отсюда видно, что 500 > 400, следовательно... < PS меньше, потому что мы, в ходе решения, поменяли знак (когда умножили на -2)
minaskorolev8
20.04.2020
1) -2 5 -7 1 0 0 2) С непосредственной подстановкой я думаю все ясно. А выполнить проверку с схемы Горнера можно найдя остаток от деления исходного многочлена на (x-x0) (ведь по теореме Безу и будет значением многочлена в точке x0). Схему Горнера тут неудобно оформлять, поэтому давай сам как нибудь. 3) В соответствии с теоремой о рациональных корнях многочлена с целыми коффициентами, целые корни должны быть делителями свободного члена 3. Делители тройки: 1, -1, 3, -3. Убеждаемся что только числа 1 и 3 являются корнями. ответ: x=1, x=3 4) Сначала поищем целые корни. Проверим числа 1, -1, 3, -3, 9, -9. 1 - корень, поэтому делим исходный многочлен на (x-1) и получаем 5x^2+14x+9. Теперь решаем квадратное уравнение находим еще два корня x=-9/5 и x=-1 Таким образом 5x^3+9x^2-5x-9=(x-1)(x+1)(5x+9)
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найдите область определения функций.все на картинке.
1) Очевидно ,что любое действительное число
2)Знаменательно не равен нулю ,то есть x≠15/2
3)Подкоренное выражение больше либо равно нуля
6x+24≥0⇒x≥-4
4)Так как корень находится в знаменатели ,то подкоренное выражение не должно быть равно нулю ,то есть будет строгое неравенство 4+8x>0⇒x>-1/2
5)Знаменатели обеих дробей не равны нулю ,то есть x≠0 и x≠±4
6)Знаменатель не равен нулю ,то есть x²+1≠0⇔x²≠-1⇒любое действительное число