Читаем: «Нуль целых, семь десятых». Нуль в целой части обыкновенных дробей не пишут, остается семь десятых. Так и пишем:
\[0,7 = \frac{7}{{10}}\]
Или: нуль целых не пишем. В числитель ставим 7, в знаменатель — 10, потому что после запятой стоит одна цифра.
2) 2,53
Читаем: «Две целых, пятьдесят три сотых». Как слышим, так и пишем:
\[2,53 = 2\frac{{53}}{{100}}\]
Или: 2 целых, в числитель пишем 53, а в знаменатель — 100, потому что после запятой стоят две цифры.
3) 14, 406
Читаем: «Четырнадцать целых, четыреста шесть тысячных». Как слышим, так и пишем:
\[14,406 = 14\frac{{406}}{{1000}}\]
Или: 14 целых, в числитель пишем 406, а в знаменатель — 1000, потому что после запятой стоят три цифры.
4) 30,00208
Читаем: «Тридцать целых, двести восемь стотысячных». Как слышим, так и пишем:
\[30,00208 = 30\frac{{208}}{{100000}}\]
Или: 30 целых, в числитель пишем 208, а в знаменатель — 100000, потому что после запятой — пять цифр.
heodbxbbshe
31.05.2023
Последовательные натуральные числа образуют арифметическую прогрессию. Ее сумма: Sn = n(a1 + an)/2, где а1 - первый член прогрессии, аn - последний член. По условию а1=1, а поскольку все следующие числа представляют собой последовательно идущие числа, то последний член прогрессии совпадает с его номером n. Сумма должна быть меньше 528. Получается неравенство: 528 > n(1+n)/2 n(1+n) < 1056 n^2 + n - 1056 <0 Найдем корни: Дискриминант: Корень из (1+4•1056) = = корень из (1+4224) = = корень из 4225 = 65 n1 = (-1+65)/2 = 64/2 = 32 n2 = (-1-65)/2 = -66/2 = -33 не подходит, поскольку корень не является натуральным числом.
(n-32)(n+32) <0 n-32<0 n+32>0
n<32 n>-32 - не подходит, поскольку n >0
1 < n < 32 Это значит, что n= 31.
ответ: 31
Проверка: Если бы n=32, то: (1+32)•32/2 = 33•32/2 = 33•16 = 528, значит сумма последовательных чисел от 1 до 32 была бы равна 528.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Ученикам 10 класса вопрос постройте схематично график функции f(x)=cos3x. укажите промежутки возрастания и убывания.
Перевести десятичные дроби в обыкновенные.
1) 0,7
Читаем: «Нуль целых, семь десятых». Нуль в целой части обыкновенных дробей не пишут, остается семь десятых. Так и пишем:
\[0,7 = \frac{7}{{10}}\]
Или: нуль целых не пишем. В числитель ставим 7, в знаменатель — 10, потому что после запятой стоит одна цифра.
2) 2,53
Читаем: «Две целых, пятьдесят три сотых». Как слышим, так и пишем:
\[2,53 = 2\frac{{53}}{{100}}\]
Или: 2 целых, в числитель пишем 53, а в знаменатель — 100, потому что после запятой стоят две цифры.
3) 14, 406
Читаем: «Четырнадцать целых, четыреста шесть тысячных». Как слышим, так и пишем:
\[14,406 = 14\frac{{406}}{{1000}}\]
Или: 14 целых, в числитель пишем 406, а в знаменатель — 1000, потому что после запятой стоят три цифры.
4) 30,00208
Читаем: «Тридцать целых, двести восемь стотысячных». Как слышим, так и пишем:
\[30,00208 = 30\frac{{208}}{{100000}}\]
Или: 30 целых, в числитель пишем 208, а в знаменатель — 100000, потому что после запятой — пять цифр.