Рациональным числом называется такое число,которое не представляется в виде бесконечной периодической дроби. А вот иррациональное - бесконечная периодическая дробь. Иначе говоря,корень должен быть "тяжело извлекаем" в случае иррационального числа. Вот,например случай 2)-рациональное,очевидно,это 13. Рассмотрим случай 4).Переведём подкоренное в неправильную дробь - 25\4,корень извлекается,будет 5\2,следовательно,число рациональное. В случае 3) степень чётная,поэтому при перемножении можно убедиться,что число будет рациональным(целым здесь) Из 1,6 корень не извлечём. Хочется 4 приплести,да не выйдет. Не так давно объясняла другому человеку случай 4). Послушайте,если вам на экзамене попадутся десятичные дроби под корнями и потребуется выбрать рациональное число,берите ТО,У КОТОРОГО ПОСЛЕ ЗАПЯТОЙ ЧЁТНОЕ КОЛИЧЕСТВО ЗНАКОВ. Здесь 1 запятая после запятой.Случай 1 вылетает.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Даны функции f(x)=tgx и g(x)= √6x-5 составьте сложные функции f(g(x)) и g(f(x)) если можете ещё что-то решить, !
2 - 2x >= 5x - 3 - 2
-7x>=-7
x<=1
2) 7x+3>5(x-4)+1
7x + 3 > 5x - 20 + 1
2x > -22
x>-11
3) x^2-9>0
x^2 > 9
x>3
or
x<-3
4) x^2-11x+30<=0
D = 121 - 120 = 1
x1 = (11+1)/2 = 6 => x <= 6
x2 = (11-1)/2= 5 => x>=5 => 5<=x<=6
5) -2x^2+5x-2<0
D = 25 - 16 =9
x1 = (-5+3)/(-4) = 0,5 => x<0,5
x2 = (-5-3)/(-4) = 2 => x>2
6) (2x+3)(x-1)<0
{+} {+}
oo>x
-1,5 {-} 1
-1,5<x<1
7) x(4-x)(x+1)>=0
{+} {+}
|||>x
-1 {-} 0 4 {-}
x<=-1 and 0 <= x <=4
8) (2x-4)/(-x+5)>=0
{+} {+}
o|>x
-5 {-} 2
-5 < x <= 2