1) 3750; 2) 2610
Объяснение:
Задачи решаются с применением формул арифметической прогрессии.
1) Чётные числа большие 25, но меньшие 125, это числа
26, 28, ..., 124 . Здесь знаменатель арифметической прогрессии d=2, a(1)=26, a(n)=124
a(n)=a(1)+d(n-1)
124 = 26+2(n-1)
124=26+2n-2
2n=100
n=50 - количество членов прогрессии.
Найдём их сумму:
S(n)=(a(1)+a(n))*n/2
S(50)=(26+124)*50:2=3750
2) Двузначные числа: 10,11,..., 99. Всего их 90=99-9.
Их сумма S(90)=(10+99)*90:2=4905
Двузначные, которые делятся на 3:
12, 15,...,99. Сколько их?
a(1)=12, a(n)=99, d=3
99=12+3(n-1)
99=12+3n-3
3n=90
n=30
Найдём их сумму: S(30)=(12+99)*30:2=1665
Двузначные, которые делятся на 5:
10, 15,...,95. Сколько их?
a(1)=10, a(n)=95, d=5
95=10+5(n-1)
95=10+5n-5
5n=90
n=18
Найдем их сумму: S(18)=(10+95)*18:2=945
Двузначные, которые делятся и на 3 и на 5:
15, 30, 45, 60, 75, 90. Их сумма равна 315
Теперь, от суммы всех двузначных чисел отнимем сумму чисел делящихся на 5, сумму чисел делящихся на 3 и прибавим сумму чисел, делящихся на 3 и на 5 одновременно (чтобы не было задвоения), получим:
4905 -1665 -945 +315 = 2610
Объяснение:
Проверим случай p=5, уйдет квадратичная часть, но линейная останется, значит неравенство не будет выполняться для всех x.
При p не равном 5 график левой части неравенства представляет собой параболу, для того, чтобы неравенство было верно для любого x вся парабола должна лежать ниже оси абсцисс, т. е. ветви вниз(p-5<0) и D(дискриминант)<0.
D1=(2p-4)^2-4(p-5)(-p-3)=8p^2-24p-44<0
2p^2-6p-11<0
D2=36+88=124
p1=(3-sqrt(31))/2
p2=(3+sqrt(31))/2
D1<0 при
Эти значения p меньше пяти(т.е. ветви направлены вниз). Заносим их в ответ.
Поделитесь своими знаниями, ответьте на вопрос:
Найдите сумму: а)всех четных чисел, больших 25, но меньших 125; 2)всех двузначных чисел , которые не делятся ни на 3, ни на 5.
ответ:a)3750
B)это числа 2386
Объяснение:надо все прибавить