rusmoney92
?>

Преобразовать выражение ³ общий корень 2√2

Алгебра

Ответы

grekova5
1.)
s(t)=t^3+3t^2
v(t)=3t^2+6t
v(1)=3+6=9 м/с
a(t)=6t+6
a(1)=6+6=12 м/с2

2.Найдите наибольшее значение функции y=-x^2-6x+5 на промежутке [-4,-2]

y=-x^2-6x+5
y`=-2x-6
y`=0 при х=-3 - принадлежит [-4,-2]
у(-4)=-(-4)^2-6*(-4)+5=13
у(-3)=-(-3)^2-6*(-3)+5=14
у(-2)=-(-2)^2-6*(-2)+5=13

наибольшее значение функции на промежутке [-4,-2]
max(y)=14

3.
y=корень(3) - горизонтальная прямая
касательная к прямой в любой точке совпадает с прямой
к оси абсцисс под углом 30 градусов касательная к прямой у=корень(3) быть не может

4.
y=(x-1)^3-3(x-1) =(x-1)((x-1)^2-3)=(x-1-корень(3))*(x-1)*(x-1+корень(3))
кривая третей степени,
симметричная относительно точки  x=1; у=0
имеет локальный минимум и локальный максимум
имеет три нуля функции
имеет одну точку перегиба
расчетов не привожу так как это уже 4 задание в вопросе

график во вложении

3*. - для измененнного условия
y=корень(3x)
y`=1/2*корень(3/x)
y`=tg(pi/6)=корень(3)/3=1/2*корень(3/x)

корень(х)=3/2
х=2,25 - это ответ
Ignateva737

По определению, \left\{\underset{n\rightarrow\infty}{lim}x_n=L\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n-L\right|

Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение \left\{\underset{n\rightarrow\infty}{lim}x_n=0\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n\right|

2) x_n=\dfrac{a}{n}

|x_n|

А значит, если взять N=\left[\dfrac{|a|}{\varepsilon}\right] +1 (*), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|a|}{\varepsilon}

(*) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{|a|}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)

А это и означает, что предел данной последовательности равен 0

4)  x_n=\dfrac{2+(-1)^n}{n}

|x_n|

|2+(-1)^n|=\left\{\begin{array}{c}2-1=1,n=2k-1,k\in N \\2+1=3,n=2k,k\in N \end{array}\right. \Rightarrow |2+(-1)^n|\leq 3\; \forall n\in N

А значит, если взять N=\left[\dfrac{3}{\varepsilon}\right] +1 (**), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|2+(-1)^n|}{\varepsilon}\leq\dfrac{3}{\varepsilon}< \left[\dfrac{3}{\varepsilon}\right] +1=N\leq n \Rightarrow \dfrac{|2+(-1)^n|}{\varepsilon}< n \Rightarrow |x_n|

(**) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{3}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)

А это и означает, что предел данной последовательности равен 0

___________________________

2) a=1. Тогда x_1=\dfrac{1}{1}=1; x_2=\dfrac{1}{2}; x_3=\dfrac{1}{3}; x_4=\dfrac{1}{4}; x_5=\dfrac{1}{5}; x_6=\dfrac{1}{6}

4)

x_1=\dfrac{2+(-1)^1}{1}=1;\;x_2=\dfrac{2+(-1)^2}{2}=1\dfrac{1}{2};\;x_3=\dfrac{2+(-1)^3}{3}=\dfrac{1}{3};\;x_4=\dfrac{2+(-1)^4}{4}=\dfrac{3}{4};\;x_5=\dfrac{2+(-1)^5}{5}=\dfrac{1}{5};\;x_6=\dfrac{2+(-1)^6}{6}=\dfrac{1}{2}.

___________________________

Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x. 0\leq \{x\}


пример 2 и 4. Все теоремы и аксиомы, будьте добры, распишите. Действий, пусть и банальных, легких не

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Преобразовать выражение ³ общий корень 2√2
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Lilykl
Daletskaya982
kondrashovalf6404
oksanakv1950
cimora-kativ
mel9152480522
wwladik2606222
alena
kuziv31
Vgubushkin
Дмитрий_Евлампиев518
nebo2020
admiral-kazan
janetp
annatarabaeva863