x^2-x^4
x^2(1-x^2)=0
x^2=0 или 1-x^2 = 0
x=0 -x^2=-1 | x(-1)
x^2 = 1
x1= 1 ; x2 = -1
ОТвет: 1;-1;0
y^3-y
y^3-y = (1-y)*y*(y+1)
y=0 или 1-y=0 или y+1=0
y=1 y=-1
ответ: 0;1;-1
y^3-y^5
y^3-y^5= -(y-1)*y^3*(y+1)
y^3 =0 или y-1=0 или y+1 = 0
y=0 y=1 y=-1
ответ: 0;1;-1
81x-x^3
x(81-x^2)=0
x=0 или 81-x^2
-x^2=-81 | x(-1)
x^2=81
x1=9; x2 = -9
ОТвет: 0;9;-9
mx^2-my^2 что с этим делать?
сделал что смог)
упрощение: m*(x^2-y^2)
разложение на множетели: (-m)*(y-x)*(y+x)
Поделитесь своими знаниями, ответьте на вопрос:
Y=x²+4x-5 a) наидите значение функции f(3), f(-1) известно что график функции проходит через точку (k;0)
y =∛( (x²-5x +4) /(x-4) ) ;
т.к. x²- 5x +4 = x²- x - 4x+4 =x(x-1) - 4(x -1) =(x -1)(x - 4) , то
y =∛( (x²-5x +4) /(x-4) )
ОДЗ : x ≠ 4 * * * иначе x ∈ ( -∞ ; 4) ∪ (4 ; ∞) * * *
(точка с абсциссой x = 4 будет выколота на графике функции )
y = ∛ (x -1) , x ≠ 4 .
---
Пересечение с координатными осями :
В точке (0 ; -1) график данной функции пересекается с осью ординат (Oy)
В точке (1 ; 0) график данной функции пересекается с осью абсцисс (Ox)
Если x → -∞ , y → -∞
Если x → ∞ , y → ∞
б)
y = ((x^2-x-6)/(x-3)) ^(1/4)
y =( (x-3)(x+2) / x-3) ) ^(1/4) ;
y = (x+2) /( x-3) /(x - 3) ^(1/4)
ОДЗ : { x+2 ≥ 0 ; x ≠ 3 , т.е. x ∈ [ -2 ; 3) ∪ (3 ; ∞) .
точка с абсциссой x = 3 будет выколота на графике функции
y = (x+2) ^(1/4) , x ∈ [ -2 ; 3) ∪ (3 ; ∞) .
Пересечение с координатными осями :
(0 ; 1,2) c осью абсцисс * * * (2) ^(1/4) )≈ 1,2
(-2 ; 0) c осью ординат
График расположен в верхней полуплоскости ( у ≥ 0 )
Схематические графики этих функции приведен в прикрепленном файле
,
Удачи Вам!