Alekseevich_Viktorovna
?>

Очень алгебра задания на фото! желаю здоровья, счастья, любви в жизни!

Алгебра

Ответы

Irinalobanowa
Итак, погнали
Пусть данное число - это [abcd] (обычно над буквами, означающими единое число, рисуют линию, но здесь такой функции нет, поэтому буду ограничивать квадратными скобками). Тогда число, полученное после перестановки - это [dcba]
[abcd]-4626=[dcba]
Известно, что изначальное число кратно пяти, значит d может быть равен или 5 или 0. Рассмотрим вариант с нулём:
[abc0]-4626=[cba]
1000a+100b+10c-4626=100c+10b+a
999a+90b-90c-4626=0
9(111a+10b-10c)=4626
111a+10b-10c=514
Все переменные у нас могут принимать значения от одного до девяти включительно. Подбором можно установить значение a=4; b никак не может быть меньше 6, так как тогда при вычитании из исходного числа 4626 получится отрицательное число. Пробуем разные варианты и приходим к выводу, что из них 4920 - единственно правильный.
Что же с d=5?
1000a+100b+10c+5-4626=5000+100c+10b+a
999a+90b-90c=369
111a+10b-10c=41, что нереально, так как для получения такого результата нужно 111 умножить на дробь без целой части, но а не может принимать значения меньше единицы.
ответ: 4920
annashaykhattarova1
f(x)=3-4x+x^2\\g(x)=3-x^2

Графически это выглядит следующим образом (см. вложение). Нам нужна площадь области, выделенной красным цветом (честно говоря, полчаса соображал, как это сделать в программе, чтобы она меня поняла)).

Алгоритм такой:
0. Обе параболы поднимаются на 1 единицу вверх, чтобы мы могли вычислить определённый интеграл (он ограничен осью x). Площадь фигуры при этом не изменится, так что всё нормально.
1. Вычисляется площадь фигуры под g(x);
2. Теперь — под f(x);
3. Разность площадей g(x)-f(x) и будет искомой фигурой.

По дороге ещё придётся найти нули функции, т. к. для определённого интеграла нужна область вычисления.

Поехали.

1)
\int\limits^{2} _0 {(3-x^2+1)} \, dx=(4x-x^3/3)|^{2}_0=8-8/3

2)
 \int\limits^2_0 {(3-4x+x^2+1)} \, dx =(4x-2x^2+x^3/3)|^2_0=8-8+8/3=8/3

3) 8-8/3-8/3=8-16/3=8/3 (кв. ед.)

Вроде бы так... :)
Попробую сейчас проверить решение. 
 
upd: да, всё сошлось.
 
Вычислите площадь фигуры ограниченной линиями y=3-4 x+xквадрат y=3-xквадрат
Вычислите площадь фигуры ограниченной линиями y=3-4 x+xквадрат y=3-xквадрат

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Очень алгебра задания на фото! желаю здоровья, счастья, любви в жизни!
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

bagrjashv41
artemkolchanov24
safin8813
lazareva
Бисеров-Чистякова
Николаевич
Asira926
manuchar-formen2
Platon
tvshi
Lilykl
Iprokopova81
ivanandrieiev1984268
Dmitrievna Lvovich
6528=8562 1421=1412 2653=3625 7984=?
funny-furiya