X²(-x² - 49) ≤ 49(-x² - 49) x²(-x² - 49) - 49(-x² - 49) ≤ 0 // перенесли все слагаемые влево (x² - 49)(-x² - 49) ≤ 0 // вынесли за скобку общий множитель (увидели, что и в x²(-x² - 49), и в 49(-x² - 49) есть (-x² - 49) -(x² - 49)(x² + 49) ≤ 0 // вынесли минус из (-x² - 49) (x² - 49)(x² + 49) ≥ 0 // разделили обе части неравенства на -1, поэтому поменялся знак x² + 49 всегда принимает положительные значения: оба слагаемые положительные, поэтому отрицательное или нулевое значение не получится. Тогда нужно, чтобы x² - 49 был неотрицательным (т.е. положительным + может быть нулем), т.к. иначе все выражение станет отрицательным. x² - 49 ≥ 0 Здесь решайте, как вам нравится: методом интервалов или рисуя параболу. В любом случае, находим нули: это -7; 7 – и наносим их на координатную ось. Если рисуете параболу: графиком функции y = x² - 49 является парабола ветвями вверх (a = 1 > 0), делаете эскиз (то есть рисуете параболу ветвями вверх, проходящую через найденные нули) и расставляете знаки: где парабола принимает отрицательные значения, т.е. располагается ниже оси x, там минус, где выше – там плюс. Нам нужны положительные решения, поэтому мы выбираем, где плюс (ответ чуть ниже). Если решаете методом интервалов: рисуете промежутки: до -7, от -7 до 7 и от 7 – и расставляете на них знаки. Коэффициент перед x > 0, начинаем с знака + (справа налево) и чередуем. ответ ниже. x ∈ (-∞; -7] ∪ [7; +∞).
ответ: x ∈ (-∞; -7] ∪ [7; +∞). Спрашивайте в комментариях, если что-то непонятно.
mansur071199486
25.05.2020
y=x^2-|4x+3| при х > -3/4 преобразуется к виду y=x^2-4x-3 = (х-2)^2-7 на участке от -3/4 до 2 график убывает от 0,5625 до -7 на участке от 2 до +беск график возрастает от -7 до + беск y=x^2-|4x+3| при х < -3/4 преобразуется к виду y=x^2+4x+3 = (х+2)^2-1 на участке от -беск до -2 график убывает от + беск до -1 на участке от -2 до -3/4 график возрастает от -1 до 0,5625 график несимметричный имеет 2 минимума и один максимум кривая у = м пересекает график y=x^2-|4x+3| ровно 3 раза только при м=-1 и при м=0,5625
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
У магазині є три види печива і десять видів цукерок.Сергій хоче купити сестрі печево чи цукерки.Скількома він може це зробити?
x²(-x² - 49) - 49(-x² - 49) ≤ 0 // перенесли все слагаемые влево
(x² - 49)(-x² - 49) ≤ 0 // вынесли за скобку общий множитель (увидели, что и в x²(-x² - 49), и в 49(-x² - 49) есть (-x² - 49)
-(x² - 49)(x² + 49) ≤ 0 // вынесли минус из (-x² - 49)
(x² - 49)(x² + 49) ≥ 0 // разделили обе части неравенства на -1, поэтому поменялся знак
x² + 49 всегда принимает положительные значения: оба слагаемые положительные, поэтому отрицательное или нулевое значение не получится. Тогда нужно, чтобы x² - 49 был неотрицательным (т.е. положительным + может быть нулем), т.к. иначе все выражение станет отрицательным.
x² - 49 ≥ 0
Здесь решайте, как вам нравится: методом интервалов или рисуя параболу. В любом случае, находим нули: это -7; 7 – и наносим их на координатную ось. Если рисуете параболу: графиком функции y = x² - 49 является парабола ветвями вверх (a = 1 > 0), делаете эскиз (то есть рисуете параболу ветвями вверх, проходящую через найденные нули) и расставляете знаки: где парабола принимает отрицательные значения, т.е. располагается ниже оси x, там минус, где выше – там плюс. Нам нужны положительные решения, поэтому мы выбираем, где плюс (ответ чуть ниже). Если решаете методом интервалов: рисуете промежутки: до -7, от -7 до 7 и от 7 – и расставляете на них знаки. Коэффициент перед x > 0, начинаем с знака + (справа налево) и чередуем. ответ ниже.
x ∈ (-∞; -7] ∪ [7; +∞).
ответ: x ∈ (-∞; -7] ∪ [7; +∞).
Спрашивайте в комментариях, если что-то непонятно.