Для решения уравнения воспользуемся методом введения новых переменных. обозначим ∛(х+24)=а, √(12-х)=в, по условию а+в=6.
а³+в²=х+24+12-х=36
Приходим к системе уравнений а³+в²=36
а+в=6
из второго уравнения в=6-а, подставим его в первое, получим
а³+(6-а)²-36=0; а³+36-12а+а²-36=0; а³+а²-12а=0
а*(а²+а-12)=0
а₁=0; по теореме, обратной теореме Виета а₂=-4, а₃=3
Возвратимся к старой переменной х.
х+24=0, отсюда х= -24; х+24=(-4)³, откуда х=-64-24=-88,х+24=3³, отсюда х=27-24=3
Поделитесь своими знаниями, ответьте на вопрос:
Побудуйте в одній системі координат графіки функцій y = 1, 5x та y = 3 і знайдіть координати точок їх перетину.
найти максимум, х∈(0, 40).
найдем производную от V=(40-X)(64-X)X=х³-104х²+2560х
она равна 3х²-208х+2560
найдем стационарные точки , приравняв производную к 0 , и решив кв. ур-ние 3х²-208х+2560=0
1) х=(104+√(104²-3·64·40))/3=(104+√((8·13)²-3·64·40)))/3=
=(104+√(8²(13²-3·40)))/3=(104+8√(13²-3·40))/3=(104+8√(169-120))/3=
=(104+8·7)/3=160/3
2) х=(104-√(104²-3·64·40))/3=(104-56)/3=16
ОСТАЛОСЬ по достаточному условию экстремума убедиться, что х=16 - точка максимума, проверяем знаки производной при переходе через эту точку, решаем неравенство 3х²-208х+2560>0, или простыми вычислениями для значений х из соответствующих промежутков.)
вот как-то так...-))