itartdesignprof
?>

Укажите все правильные ответы. Известно, что a > 3; b > 9.

Алгебра

Ответы

milkiev

Я немного не поняла объяснишь отвечу.

ramco1972

а)

\sin {}^{2} (3x) - 2 \sin(6x) + 3 \cos {}^{2} (3x) = 0 \\ \sin {}^{2} (3x) - 2 \times 2 \sin(3x) \cos(3x) + 3 \cos {}^{2} (3x) = 0 \\ \sin {}^{2} (3x) - 4 \sin(3x) \cos(3x) + 3 \cos {}^{2} (3x) = 0

Проверим, может ли \cos(3x) равняться нулю. Для этого подставим 0 в уравнение вместо косинуса:

\sin {}^{2} (3x) - 4 \sin(3x) \times 0 + 3 \times {0}^{2} = 0 \\ \sin {}^{2} (3x) = 0 \\ \sin(3x) = 0

Получили, что при \cos(3x)=0, \sin(3x)=0, но не бывает такого угла, косинус и синус которого одновременно обнуляются, поэтому \cos(3x)≠0, следовательно мы можем разделить наше уравнение на косинус:

\frac{ \sin {}^{2} (3x) }{ \cos {}^{2} (3x) } - 4 \frac{ \sin(3x) \cos(3x) }{ \cos {}^{2} (3x) } + 3 \frac{ \cos {}^{2} (3x) }{ \cos {}^{2} (3x) } = 0 \\ \tan {}^{2} (3x) - 4 \tan(x) + 3 = 0

Получили квадратное уравнение относительно такнегса. За теоремой Виета находим корни данного уравнения:

\tan(3x) = 1 \\ \tan(3x) = 3 \\ 3x = \frac{\pi}{4} + \pi n \\ 3x = \arctg(3) + \pi k \\ x = \frac{\pi}{12} + \frac{\pi}{3} n \\ x = \frac{1}{3} \arctg(3) + \frac{\pi}{3} k, \: n,k \in \mathbb Z

б) Необходимо отобрать корни уравнения на отрезке [-1;1]. Для этого воспользуемся двойным неравенством:

- 1 \leqslant \frac{\pi}{12} + \frac{\pi}{3} n \leqslant 1 \\ - 1 - \frac{\pi}{12} \leqslant \frac{\pi}{3}n \leqslant 1 - \frac{\pi}{12} \\ - \frac{\pi + 12}{12} \leqslant \frac{\pi}{3} n \leqslant \frac{12 - \pi}{12} \\ - \frac{\pi + 12}{4} \leqslant \pi n \leqslant \frac{12 - \pi}{4} \\ - \frac{\pi + 12}{4\pi} \leqslant n \leqslant \frac{12 - \pi}{4\pi}

Для аппроксимации возьмём π ≈ 3:

- \frac{3 + 12}{4 \times 3} \leqslant n \leqslant \frac{12 - 3}{4 \times 3} \\ - \frac{5}{4} \leqslant n \leqslant \frac{3}{4} \\n \in[ - 1.25;0.75]

Учитывая, что n – целое число, на промежутке [-1;1], оно может принимать значения: -1, 0. Тогда корни на данном промежутке: x_{1}=\frac{\pi}{12}-\frac{\pi}{3}=-\frac{\pi}{4},\\ x_{2}=\frac{\pi}{12}+\frac{\pi}{3} \times 0 = \frac{\pi}{12}.

Отбираем второй корень по аналогии с первым:

- 1 \leqslant \frac{1}{3} \arctg(3) + \frac{\pi}{3} k \leqslant 1

Мы знаем что функция arctg(x) довольно быстро изменяется в пределах от -\frac{\pi}{2} до \frac{\pi}{2}, поэтому для больших х \arctg(x)≈\frac{\pi}{2}. Тогда

- 1 \leqslant \frac{1}{3} \times \frac{\pi}{2} + \frac{\pi}{3} k \leqslant 1 \\ - 1 \leqslant \frac{\pi}{6} + \frac{\pi}{3} k \leqslant 1

Сразу аппроксимируем π ≈ 3:

- 1 \leqslant \frac{3}{6} + \frac{1}{3}k \leqslant 1 \\ - 1 \leqslant \frac{1}{2} +\frac{1}{3} k \leqslant 1 \\ - 1.5 \leqslant \frac{1}{3}k \leqslant 0.5 \\ - 0.5 \leqslant k \leqslant \frac{1}{6} \\ - 1.5 \leqslant k \leqslant 0.5

Для целых k в данный отрезок [-1;1] попадает только два значения k = -1 и k = 0. Тогда корни x_{3} = \frac{1}{3} \arctg(3)+\pi \times 0 = \frac{1}{3} \arctg(3) \\ x_{4} = \frac{1}{3} \arctg(3)+\frac{\pi}{3}\times (-1) = \frac{1}{3} \arctg(3) - \frac{\pi}{3}.

а) x = \frac{\pi}{12} + \frac{\pi}{3} n, \: x = \frac{1}{3} \arctg(3) + \frac{\pi}{3} k, \: n,k \in \mathbb Z;

б) -\frac{\pi}{4}, \: \frac{\pi}{12}, \: \frac{1}{3} \arctg(3), \: \frac{1}{3} \arctg(3) - \frac{\pi}{3}.

Ивлев1508

1)

30% числа k = 0,3a

35% числа p = 0,35p

0,3k > 0,35p на 20

Первое уравнение:

0,3k - 0,35p = 20

2)

20% числа k = 0,2а

30% числа p = 0,3р

0,3р > 0,2k на 8

Второе уравнение:

0,2k + 8 = 0,3p

3)

Решаем систему.

{0,3k-0,35р = 20

{0,2k - 0,3р = - 8

Первое умножим на 2, а второе умножим на (-3)

{0,6k-0,7р = 40

{-0,6k+0,9р = 24

Сложим

0,6k-0,7р -0,6k+0,9р = 40+24

     0,2р = 64

          р = 64 : 0,2

          р = 320

В первое уравнение 0,3k - 0,35p = 20 подставим р = 320.

0,3k - 0,35·320 = 20

0,3k - 112 = 20

0,3k = 112 + 20

0,3k = 132

    k = 132 : 0,3

    k = 440

ответ: k = 440;

          р = 320.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Укажите все правильные ответы. Известно, что a > 3; b > 9.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

myataplatinumb348
grishin
Краева
Маринова
anytkaakk
slavutich-plus2
klykovav672
helenya
ilyxa08
morozova
Sergei Vitalevna
dearmaria
DJXEz80
DJXEz80
Курнев-Анастасия359