egoryuzbashev
?>

Закрасьте множество A U (B n C)

Алгебра

Ответы

Batishcheva
Это все простые числа:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47
Это 15 чисел, но каждое равно просто самому себе, потому что они простые и делятся только на 1 и на себя. 1 - это не простое число.
Все составные числа больше, чем сумма их простых делителей.
Например, делители 10 и 20: 2 и 5, 2+5 = 7. 34: 2 и 17, 2+17 = 19.
Если считать 1 простым числом, тогда число только одно:
6 = 1+2+3 - это так называемое совершенное число.
До 50 есть еще одно совершенное число 28 = 1+2+4+7+14,
но у него не все делители - простые.
ответ: если 1 - не простое число, то 15 чисел.
Если 1 - простое число, то одно число 6.
sevro3038

x2 + 4x + 8 = 0

Найдем дискриминант квадратного уравнения:

D = b2 - 4ac = 42 - 4·1·8 = 16 - 32 = -16

Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.

4x2 - 12x + 9 = 0

Найдем дискриминант квадратного уравнения:

D = b2 - 4ac = (-12)2 - 4·4·9 = 144 - 144 = 0

Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:

x = 122·4 = 1.5

3x2 - 4x - 1 = 0

Найдем дискриминант квадратного уравнения:

D = b2 - 4ac = (-4)2 - 4·3·(-1) = 16 + 12 = 28

Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:

x1 = 4 - √282·3 = 23 - 13√7 ≈ -0.21525043702153024

x2 = 4 + √282·3 = 23 + 13√7 ≈ 1.5485837703548635

2x2 - 9x + 15 = 0 Найдем дискриминант квадратного уравнения: D = b2 - 4ac = (-9)2 - 4·2·15 = 81 - 120 = -39 Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Закрасьте множество A U (B n C)
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

myglassi26
tarhan1221
kuchin
mariya
v-shevlyakov7992
beliaevabeliaeva-olesya35
missvita
ledlenta751
gabramova
Алексей Ксения
Daletskaya Sergei1121
artemy682719
seleznev1980
opal19575
Nikolaevich