katrinasvr
?>

Преобразуйте в многочлен выражение (a+b)в кв*(a-b)

Алгебра

Ответы

kampina1

(a+b)*(a+b)*(a-b) = (a в кв. - b в кв.)*(a+b) = a в кубе - а в кв.*b - a*b в кв. - b в кубе

salesrawtogo

t = s/v пусть скорость до озера v1 км/ч, а по проселочной дороге - v2 км/ч время до озера по шоссе 5/v1 часа, время обратного пути 3/v2 часа система: 5/v1 = 3/v2 + 35/60 5/v1 + 3/v2 = (60+55)/60 5/v1 - 3/v2 = 35/60 5/v1 + 3/v2 = 115/60 складываем 2 строки: 10/v1 = 150/60 v1 = 10*60/150 v1 = 4 км/ч - скорость по шоссе 5/4 - 3/v2 = 35/60 3/v2 = 5/4 - 35/60 3/v2 = (75-35)/60 3/v2 = 2/3 v2 = 3*3/2 v2 = 4.5 км/ч - скорость по проселку ответ: 4 км/ч и 4.5 км/ч проверка: 5км / 4км/ч = 1,25 = 1 час 15 минут по шоссе 3км / 4,5 км/ч = 2/3 часа = 40 минут по проселку 1 час 15 минут - 40 минут = 35 минут 1 час 15 минут + 40 минут = 1 час 55 минут

zbellatriks

f(x) = \dfrac{8}{(3 - 5x)^{4}} + \dfrac{3}{\cos^{2}2x} - e^{8x+1}

Совокупность всех первообразных функции f(x) называют неопределенным интегралом:

\displaystyle \int f(x) \, dx = F(x) + C,

где C — произвольная постоянная.

Тогда \displaystyle \int f(x) \, dx = \int \left(\dfrac{8}{(3 - 5x)^{4}} + \dfrac{3}{\cos^{2}2x} - e^{8x+1} \right) \, dx

Теорема: если функции F и G являются соответственно первообразными функций f и g на промежутке I, то на этом промежутке функция y = F(x) \pm G(x) является первообразной функции y = f(x) \pm g(x):

\displaystyle \int \left(f(x) \pm g(x) \right) \, dx = \int f(x) \, dx \pm \int g(x) \, dx = F(x) \pm G(x) + C,

где C — произвольная постоянная.

Тогда \displaystyle \int \left(\dfrac{8}{(3 - 5x)^{4}} + \dfrac{3}{\cos^{2}2x} - e^{8x+1} \right) \, dx =

\displaystyle = \int \dfrac{8}{(3 - 5x)^{4}} dx + \int \dfrac{3}{\cos^{2}2x} dx - \int e^{8x+1} dx

Теорема: если функция F является первообразной для функции f на промежутке I, а k — некоторое число, то на этом промежутке функция y = kF(x) является первообразной функции y = kf(x):

\displaystyle \int kf(x) \, dx = k \int f(x) \, dx = kF(x) + C

Тогда \displaystyle \int \dfrac{8}{(3 - 5x)^{4}} dx + \int \dfrac{3}{\cos^{2}2x} dx - \int e^{8x+1} dx =

= \displaystyle 8 \int \dfrac{dx}{(3 - 5x)^{4}} + 3\int \dfrac{dx}{\cos^{2}2x} - \int e^{8x+1} dx

Теорема: если функция F является первообразной для функции f на промежутке I, а k — некоторое число, отличное от нуля, то на соответствующем промежутке функция y = \dfrac{1}{k} F(kx + b) является первообразной функции y = f(kx + b):

\displaystyle \int f(kx + b) \, dx = \dfrac{1}{k} F(kx + b) + C,

где C — произвольная постоянная.

Найдем каждый интеграл по отдельности:

1) \ \displaystyle \int \dfrac{dx}{(3 - 5x)^{4}} = \int (3 - 5x)^{-4} \, dx = \dfrac{1}{-5} \cdot \dfrac{(3 - 5x)^{-4 + 1}}{-4 + 1} + C =

= \dfrac{1}{15(3 - 5x)^{3}} + C

2) \ \displaystyle \int \dfrac{dx}{\cos^{2}2x} = \dfrac{1}{2} \, \text{tg} \, 2x + C

3) \ \displaystyle \int e^{8x+1} dx = \dfrac{1}{8} e^{8x + 1} + C

Получаем: \displaystyle 8 \int \dfrac{dx}{(3 - 5x)^{4}} + 3\int \dfrac{dx}{\cos^{2}2x} - \int e^{8x+1} dx =

= \dfrac{8}{15(3 - 5x)^{3}} + \dfrac{3}{2} \, \text{tg}\, 2x - \dfrac{1}{8} e^{8x + 1} + C

Таким образом, общий вид первообразных для функции f(x) имеет вид:

\dfrac{8}{15(3 - 5x)^{3}} + \dfrac{3}{2} \, \text{tg}\, 2x - \dfrac{1}{8} e^{8x + 1} + C

ответ: \dfrac{8}{15(3 - 5x)^{3}} + \dfrac{3}{2} \, \text{tg}\, 2x - \dfrac{1}{8} e^{8x + 1} + C

Использованные формулы интегрирования:

\displaystyle \int x^{a} \, dx = \dfrac{x^{a+1}}{a+1} + C, \ a \neq -1

\displaystyle \int \dfrac{dx}{\cos^{2}x} = \text{tg} \, x + C

\displaystyle \int e^{x} \, dx = e^{x} + C

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Преобразуйте в многочлен выражение (a+b)в кв*(a-b)
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Nataliya Aleksandr1197
Nikishina
chetverikovalex3738
тахирович_Игорь581
Анатольевич447
sancity997124
Darya Aleksei1173
vps1050
Vitalik6928
miss1380
Neveselova
pisikak999
dimanov
Александр734
DudukinSerega2507834