Відповідь:
Пояснення:
1) (x + 2)(x² - 2x + 4) - x(x - 3)(x + 3) - 42 =
х³ - 2х + 4х + 2х² - 4х + 8 - х³ - 3х² + 3х² + 9х - 42 =
х³ - х³ + 2х² - 3х² + 3х² - 2х + 4х - 4х + 9х + 8 - 42 =
2х² + 7х - 34
2) (x - 3)(x² + 3x + 9) - x(x²- 16) + 21=
х³ + 3х² + 9х - 3х² - 9х - 27 - х³ + 16х + 21 =
х³ - х³ + 3х² - 3х² + 9х - 9х + 16х - 27 + 21 =
16х - 6
3) (2x - 1)(4x² + 2x + 1)-23 - 4x(2x² + 3) =
8х³ + 4х² + 2х - 4х² - 2х - 1 - 23 - 8х³ - 12х =
8х³ - 8х³ + 4х² - 4х² + 2х - 2х - 12х - 1 - 23 =
-12х - 24
4) 16x(4x² - 5) + 17 - (4x + 1)(16x² - 4x + 1) =
64х³ - 80х + 17 - 64х³ - (16х + 4х + 16х² - 4х + 1) =
64х³ - 80х + 17 - 64х³ - 16х - 4х - 16х² + 4х - 1 =
64х³ - 64х³ - 16х² - 80х - 16х - 4х + 4х + 17 - 1 =
- 16х² - 96х + 16
Решение системы уравнений х₁=1 х₂=3
у₁=1 у₂=7
Объяснение:
Решить систему уравнений:
ху-2у-4х= -5
у-3х= -2
Выразим у через х во втором уравнении, подставим выражение в первое уравнение и вычислим х:
у= -2+3х
х(-2+3х)-2(-2+3х)-4х= -5
-2х+3х²+4-6х-4х= -5
Приведём подобные члены:
3х²-12х+9=0, квадратное уравнение, ищем корни:
х₁,₂=(12±√144-108)/6
х₁,₂=(12±√36)/6
х₁,₂=(12±6)/6
х₁=6/6
х₁=1
х₂=18/6
х₂=3
у= -2+3х
у₁= -2+3*1
у₁=1
у₂= -2+3*3
у₂=7
Решение системы уравнений х₁=1 х₂=3
у₁=1 у₂=7
Поделитесь своими знаниями, ответьте на вопрос:
с этой системой уравнений. Буду благодарен
Смоооотриии фооооотоооо