Исходная дробь равносильна следующей системе (числитель равен нулю, знаменатель не равен нулю + ОДЗ):
В первом уравнении произведение равно нулю, когда хотя бы один из множителей равен нулю. Второе неравенство равносильно тому, что подкоренное выражение не равно нулю. Значит, вместе второе и третье образуют неравенство 2x + y - 1 > 0 ⇔ y > -2x + 1. Вернёмся к первому уравнению:
В первом уравнении сделаем замену |x| + |y| = t.
По теореме Виета
Получаем
Третье уравнение — уравнение окружности с центром (0; 0) и радиусом 4. Первые два уравнения — уравнения квадратов с центром в точке (0; 0), наклонённых на 45° и диагоналями 6 и 10: действительно, если раскрыть модуль y, а всё без y перенести в правую сторону, то при y ≥ 0 y = -|x| + 3, при y < 0 y = |x| - 3. Аналогично с |x| + |y| = 5.
Учтём ограничение y > -2x + 1: нам подохдят все y, что выше прямой -2x + 1. Всё вместе это выглядит, как на первой картинке. Теперь нужно обрезать всё, что не попадает в синюю область (см. вторую картинку).
Для выполнения второго задания вычислим точки пересечения квадратов и окружности с прямой y = -2x + 1, а также точки пересечения окружности и большого квадрата.
При x < 0:
При 0 ≤ x < 0,5: — не подходит
При x ≥ 0,5:
При x < 0:
При 0 ≤ x < 0,5: — не подходит
При x ≥ 0,5:
Решим первое уравнение:
Прямая y = px - 1 — прямая, проходящая через точку (0; -1). Действительно, если подставить x = 0, вне зависимости от параметра p при данном x y = -1. p регулирует наклон прямой. Будем вращать прямую около точки (0; -1) и отмечать промежутки (красным), где прямая "начинает" и "заканчивает" иметь две общие точки (см. третью картинку).
На рисунке отмечены все промежутки и частные случаи, когда прямая имеет две общие точки. Выразим p через x и y:
Для
Для
Для
Для
Для
Для
Для
Для
Итого
smakarov76
12.03.2023
Примем всю работу за 1. Пусть х минут понадобится второму принтеру для печати справочных материалов, тогда первому принтеру необходимо (х - 10) минут. Первый принтер печатает 1/(х - 10) часть справочных материалов в минуту, тогда второй принтер печатает 1/х часть справочных материалов в минуту. Вместе они могут напечатать справочные материалы за 12 минут. 12*(1/х + 1/( х - 10)) = 1 Решим уравнение: 12/х+12/(x - 10)=1 (умножим на х*(х-10) 12(х-10)+12x = 1*x(х-10) 12x-120+12x= х²-10х 12х-120+12х-х²+10х=0 -x²+34x-120 =0 x²-34x+120 =0 D=b²-4ac=(-34)²-4*1*120=1156-480=676 x₁=(-b+√D)/2a=-((-34)+26)/2=(34+26)/2=30 x₂=(-b-√D)/2a=-((-34)-26)/2=(34-26)/2=8/2=4 (не подходит, т.к. меньше 10) Тогда первый принтер печатает на 10 минут раньше: х-10=30-10=20 (минут) ответ : чтобы напечатать справочные материалы первому принтеру понадобится 20 минут.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найдите все которыми можно составить сумму в 4545 рублей из десятирублевых и пятирублевых монет. Запишите полученное уравнение
ответ:
Объяснение:
Исходная дробь равносильна следующей системе (числитель равен нулю, знаменатель не равен нулю + ОДЗ):
В первом уравнении произведение равно нулю, когда хотя бы один из множителей равен нулю. Второе неравенство равносильно тому, что подкоренное выражение не равно нулю. Значит, вместе второе и третье образуют неравенство 2x + y - 1 > 0 ⇔ y > -2x + 1. Вернёмся к первому уравнению:
В первом уравнении сделаем замену |x| + |y| = t.
По теореме Виета
Получаем
Третье уравнение — уравнение окружности с центром (0; 0) и радиусом 4. Первые два уравнения — уравнения квадратов с центром в точке (0; 0), наклонённых на 45° и диагоналями 6 и 10: действительно, если раскрыть модуль y, а всё без y перенести в правую сторону, то при y ≥ 0 y = -|x| + 3, при y < 0 y = |x| - 3. Аналогично с |x| + |y| = 5.
Учтём ограничение y > -2x + 1: нам подохдят все y, что выше прямой -2x + 1. Всё вместе это выглядит, как на первой картинке. Теперь нужно обрезать всё, что не попадает в синюю область (см. вторую картинку).
Для выполнения второго задания вычислим точки пересечения квадратов и окружности с прямой y = -2x + 1, а также точки пересечения окружности и большого квадрата.
При x < 0:
При 0 ≤ x < 0,5:
— не подходит
При x ≥ 0,5:
При x < 0:
При 0 ≤ x < 0,5:
— не подходит
При x ≥ 0,5:
Решим первое уравнение:
Прямая y = px - 1 — прямая, проходящая через точку (0; -1). Действительно, если подставить x = 0, вне зависимости от параметра p при данном x y = -1. p регулирует наклон прямой. Будем вращать прямую около точки (0; -1) и отмечать промежутки (красным), где прямая "начинает" и "заканчивает" иметь две общие точки (см. третью картинку).
На рисунке отмечены все промежутки и частные случаи, когда прямая имеет две общие точки. Выразим p через x и y:
Для
Для
Для
Для
Для
Для
Для
Для
Итого