Васильевичь Виктория457
?>

нужно очень Какое из приведенных ниже неравенств является верным при любых значениях b и c удовлетворяющих условию b > c 1. с - b < -1 2. с - b < -5 3. b - с > -5 4. b - с > 4

Алгебра

Ответы

Ingakazakova

Пусть в турнире участвовало N человек.

Каждый сыграл в турнире N-1 партию (со всеми, кроме себя), т.е. все вместе сыграли N*(N-1) партий.

НО! Каждая партия игралась двумя участниками, т.е. при первом подсчета мы каждую отдельно сыгранную партию посчитали два раза (для первого участника и для второго), следовательно общее число сыгранных партий будет равно N*(N-1)/2.

Поскольку в шахматной партии разыгрывается ровно одно очко, то всего очков в турнире было разыграно столько, сколько было сыграно партий, т.е. N*(N-1)/2.

Игрок, занявший первое место выиграл все партии, а сыграл он N-1 партию, значит и очков он набрал ровно столько.

Следуя этим заключениям можем записать уравнение:

5*(N-1) = N*(N-1)/2 - (N-1)

Количество очков первого игрока, умноженное на пять, равно общему числу очков без учета набранных первым (т.е. количеству очков, набранных остальными участниками).

Теперь осталось решить уравнение. Делим его на (N-1).

5 = N/2 - 1

Вполне очевидно, что N>1, поэтому выполненное деление вполне допустимо (делим не на ноль).

N/2 = 6

N=12

Т.е. всего участников в турнире было 12

Победитель набрал 11 очков из 66 возможных, т.е. в 5 раз больше чем остальные.


ответ: 12 человек участвовало в турнире.

dimkimka386

Пусть в турнире участвовало N человек.

Каждый сыграл в турнире N-1 партию (со всеми, кроме себя), т.е. все вместе сыграли N*(N-1) партий.

НО! Каждая партия игралась двумя участниками, т.е. при первом подсчета мы каждую отдельно сыгранную партию посчитали два раза (для первого участника и для второго), следовательно общее число сыгранных партий будет равно N*(N-1)/2.

Поскольку в шахматной партии разыгрывается ровно одно очко, то всего очков в турнире было разыграно столько, сколько было сыграно партий, т.е. N*(N-1)/2.

Игрок, занявший первое место выиграл все партии, а сыграл он N-1 партию, значит и очков он набрал ровно столько.

Следуя этим заключениям можем записать уравнение:

5*(N-1) = N*(N-1)/2 - (N-1)

Количество очков первого игрока, умноженное на пять, равно общему числу очков без учета набранных первым (т.е. количеству очков, набранных остальными участниками).

Теперь осталось решить уравнение. Делим его на (N-1).

5 = N/2 - 1

Вполне очевидно, что N>1, поэтому выполненное деление вполне допустимо (делим не на ноль).

N/2 = 6

N=12

Т.е. всего участников в турнире было 12

Победитель набрал 11 очков из 66 возможных, т.е. в 5 раз больше чем остальные.


ответ: 12 человек участвовало в турнире.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

нужно очень Какое из приведенных ниже неравенств является верным при любых значениях b и c удовлетворяющих условию b > c 1. с - b < -1 2. с - b < -5 3. b - с > -5 4. b - с > 4
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Koranna1986
Nazart44446
ivanandrieiev1984268
yrgenson2011801
arhangel1055
ayk111560
obelov
galinasemyan689
stusha78938
Anna389
lanac3po
Elenabolt77
helenavalenti2846
Andreevich
vuyakovleva