Арифметический квадратный корень из некоторого числа - это неотрицательное число, квадрат которого равен некоторому числу.
Обозначается: √а. Т.е. √а = b, причем b ≥ 0 и b² = a.
Например, √4 = 2, т.к. 2² = 2 и 2 ≥ 0.
Тогда:
√а = 3, значит, а = 9, т.к. 3² = 9;
√а = 10, значит, а = 100, т.к. 10² = 100;
√а = 0, значит, а = 0, т.к. 0² = 0;
√а = 0,8, значит, а = 0,64, т.к. 0,8² = 0,64;
√а = 1/4, значит, а = 1/16, т.к. (1/4)² = 1/16;
√а = 0,1, значит, а = 0,01, т.к. 0,1² = 0,01;
√а = 1 целая 2/3 = 5/3, значит, а = 25/9 = 2 целых 7/9, т.к. (5/3)² = 25/9;
√а = 1,1, значит, а = 1,21, т.к. 1,1² = 1,21.
Задачка интересная, смотри, как такие решаются.
В таких задачках главное- последняя цифра числа, которое возводится в степень
В первом случае 2001 оканчивается на 1, а 1 в любой степени 1, поэтому и 2001 в любой степени оканчивается на 1.
Во втором случае число оканчивается на 9. Исследуем, на какую цифру будут оканчиваться степени 9
Степень Последняя цифра 9^n
1 9
2 1
3 9
4 1
и т.д. уже видно, что при возведении в чётную степень последняя цифра 1, в нечётную - 2
. Таким образом
1999^2002 оканчивается на 1 (2002 - чётное число)
1999^1333 оканчивается на 2 (1333 - нечётное число).
Вот, примерно, так.
Попробуй исследовать поведение последней цифры числа 2013^n, 1917^n. Получится интересней.
Ну и последнее. Всё это просто рассуждения, а как же это всё доказать, можешь ты спросить. Так же просто. Смотри, например, случай 1.
Любое число, оканчивающееся на 1 можно представить в виде 10*к +1. Значит его степень
(10*к+1)^n = 10^n*k^n + +1^n(это бином Ньютона) = 10*R +1.
то есть любое число, оканчивающееся на 1 в любой степени оканчивается на 1.
Так же через бином Ньютона доказывается и всё остальное.
Успехов!
Да, и ещё. Условие у тебя очень нечёткое, если в самом деле нет запятых, то в 1 - решение то же, а в 2 нужно поисследовать ещё на какую цифру оканчивются степени 2002, то есть 2
степень посл. цифра 2^n
1 2
2 4
3 8
4 6
5 2
6 4
7 8
ну и тд. то есть это всегда чётное число, поэтому
(1999)^(2002^1333) оканчивается на 1, так как показатель чётный.
Вот теперь совсем всё.
Пиши четче задания! Видишь, как много может значить какая-то запятая!
Поделитесь своими знаниями, ответьте на вопрос:
Разложите на множители многочлен: 1) -3x^2+6x-3 2)8x^3+y^3
ответ на фото........