Во-первых определимся с понятием : что такое область определения функции? Область определения функции- это значения аргумента ("х"), при которых значения функции имеют смысл( существуют) Короче говоря, нас спрашивают: какие "х" можно брать, чтобы значение функции можно было вычислить. А мы ведь умные(правда?) и знаем, что: 1) делить на 0 нельзя;2) корень квадратный из отрицательного числа не существуют , ну и т.д. а) у = √(х +3)(9 -х) У нас как раз квадратный корень. А это значит, что (х+3)(9-х) ≥ 0. Решаем это неравенство методом интервалов.Ищем нули множителей. х+3 = 0, ⇒ х = -3 9 -х = 0,⇒ х = 9 -∞ -3 9 +∞ - + + это знаки (х +3) + + - это знаки (9 -х) Это решение неравенства ответ: х∈ [ -3; 9] б) у = (5х³ -2х)/√(х² -11х +28) Рассуждаем аналогично. числитель существует ( можно посчитать значение) при любом "х" в знаменателе стоит квадратный корень. Он существует только при неотрицательных "х", но он стоит в знаменателе (делить на 0 нельзя) Значит, нам предстоит решить неравенство: х² - 11х +28 > 0 По т. Виета ищем корни х₁=4, х₂ = 7 ответ: х∈(-∞; 4)∪(7; +∞)
Салиев
28.06.2022
Первое число - х Второе число - (х- 1 2/3) Третье число - (х+ 2 2/10) Сумма =15 Уравнение: х+(х- 1 2/3) + (х+ 2 2/10)=15 х+х+х=15+1 2/3 - 2 2/10 3х= 15+ 1 20/30 - 2 6/30 3х= 14 14/30 = 14 7/15 х= 14 7/15 :3 = 217/15 × 1/3 х=217/45 х= 4 37/45 - первое число 4 37/45 - 1 2/3 = 3 7/45 - второе число 4 37/45 + 2 2/10 = 7 2/90= 7 1/45 - третье число Проверим уравнение: 4 37/45 + (4 37/45 - 1 2/3)+( 4 37/45+ 2 2/10)=15 4 37/45 + ( 4 37/45 - 1 30/45) +(4 74/90 + 2 18/90)=15 4 37/45 + 3 7/45 + 7 2/90 =15 (4+3+7) + ((37+7+1)/45) =15 14 + 45/45=15 15=15 ответ: 4 37/45 - первое число ; 3 7/45 - второе число; 7 1/45 - третье число.
Область определения функции- это значения аргумента ("х"), при которых значения функции имеют смысл( существуют)
Короче говоря, нас спрашивают: какие "х" можно брать, чтобы значение функции можно было вычислить. А мы ведь умные(правда?) и знаем, что: 1) делить на 0 нельзя;2) корень квадратный из отрицательного числа не существуют , ну и т.д.
а) у = √(х +3)(9 -х)
У нас как раз квадратный корень. А это значит, что
(х+3)(9-х) ≥ 0. Решаем это неравенство методом интервалов.Ищем нули множителей.
х+3 = 0, ⇒ х = -3
9 -х = 0,⇒ х = 9
-∞ -3 9 +∞
- + + это знаки (х +3)
+ + - это знаки (9 -х)
Это решение неравенства
ответ: х∈ [ -3; 9]
б) у = (5х³ -2х)/√(х² -11х +28)
Рассуждаем аналогично.
числитель существует ( можно посчитать значение) при любом "х"
в знаменателе стоит квадратный корень. Он существует только при неотрицательных "х", но он стоит в знаменателе (делить на 0 нельзя)
Значит, нам предстоит решить неравенство:
х² - 11х +28 > 0
По т. Виета ищем корни
х₁=4, х₂ = 7
ответ: х∈(-∞; 4)∪(7; +∞)