В решении.
Объяснение:
19. На факультете А отличники составляют 10% от общего количества студентов этого факультета, на факультете Б – 20%, а на факультете В – лишь 4%. Найдите средний процент отличников по всем трём факультетам, если известно, что на факультете Б учится на 50% больше студентов, чем на факультете А, а на факультете В – вдвое меньше, чем на факультете А.
х - студентов на А.
1,5х - студентов на Б.
х/2=0,5х - студентов на В.
0,1х - отличников на А.
0,2*1,5х=0,3х - отличников на Б.
0,04*0,5х=0,02х - отличников на В.
1) Найти количество студентов на трёх факультетах:
х + 1,5х + 0,5х = 3х.
2) Найти количество отличников на трёх факультетах:
0,1х + 0,3х + 0,02х = 0,42х.
3) Найдите средний процент отличников по всем трём факультетам:
0,42х : 3х * 100% = 14 %.
Поделитесь своими знаниями, ответьте на вопрос:
Реши систему уравнений методом подстановки. ⎧ ⎩ ⎨ 2x 3 − 5v 4 =−3 5x 6 + 7v 8 =6 ответ: x=; v=.
Окружность с центром в т. O и D = 68. Хорда AB.
Расстояние OM = 30 от т. O до прямой AB.
Найти:AB - ?
Решение:Заметим, что OM ⊥ AB (так как OM - это расстояние от т. О до прямой AB - длина перпендикуляра из точки О к прямой AB).
Пусть отрезок OM лежит на радиусе OC рассматриваемой окружности. Тогда OC, как радиус, перпендикулярный хорде, пересекает эту хорду ровно в ее середине: AM = BM.
Рассмотрим прямоугольные треугольники, равные по первому признаку (или же по двум катетам OM = OM и AM = BM): ΔAOM = ΔBOM.
OA = OB = D / 2 = 68 / 2 = 34, как радиусы.
OM = 30, по условию.
Применим теорему Пифагора, например, к ΔAOM:
AM² + OM² = AO²
AM² = AO² - OM²
AM² = 34² - 30²
AM² = 256
AM = 16
Значит:
AB = AM + BM = AM + AM = 16 + 16 = 32.
Задача решена!
ответ: 32.