ответ:Решение:
Обозначим истинную скорость пешехода за (х) км/час, тогда при увеличении скорости на 1 км/час, скорость пешехода составила:
(х+1) км/час
Если бы пешеход км со своей истинной скоростью, то есть (х) км/час, то он потратил бы время в пути:
10/х (час),
а при увеличении скорости на 1 км/час, пешеход находился в пути:
10/(х+1) час
А так как он км на 20 мин быстрее, составим уравнение:
10/х - 10/(х+1)=20/60 20/60 -это перевод в ед. измер. (час)
10/х -10/(х+1)=1/3
3*(х+1)*10 - 3*х*10=х*(х+1)*1
30х+30-30х=x^2+x
x^2+x-30=0
x1,2=(-1+-D)/2*1
D=√(1-4*1*-30)=√(1+120)=√121=11
х1,2=(-1+-11)/2
х1=(-1+11)/2=10/2=5 (км/час) - истинная скорость пешехода
х2=(-1-11)/2=-6 - не соответствует условию задачи
ответ: Истинная скорость пешехода 5км/час
Объяснение:
В решении.
Объяснение:
Катер проплыл 60 км по течению реки, а затем 20 км против течения и потратил на весь путь 7 часов. Какова собственная скорость катера, если скорость течения реки 1 км/час?
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - собственная скорость катера.
(х + 1) - скорость катера по течению.
(х - 1) - скорость катера против течения.
60/(х + 1) - время катера по течению.
20/(х - 1) - время катера против течения.
Время в пути 7 часов, уравнение:
60/(х + 1) + 20/(х - 1) = 7
Умножить уравнение на (х + 1)(х - 1), чтобы избавиться от дробного выражения:
60 * (х - 1) + 20 * (х + 1) = 7 * (х + 1)(х - 1)
Раскрыть скобки:
60х - 60 + 20х + 20 = 7х² - 7
Привести подобные члены:
-7х² + 80х - 40 + 7 = 0
-7х² + 80х - 33/-1
7х² - 80х + 33 = 0, квадратное уравнение, ищем корни.
D=b²-4ac = 6400 - 924 = 5476 √D= 74
х₁=(-b-√D)/2a
х₁=(80-74)/14
х₁=6/14
х₁=3/7, отбрасываем, как не отвечающий условию задачи.
х₂=(-b+√D)/2a
х₂=(80+74)/14
х₂=154/14
х₂=11 (км/час) - собственная скорость катера.
Проверка:
60 : 12 = 5 (часов) - по течению.
20 : 10 = 2 (часа) - против течения.
5 + 2 = 7 (часов) - в пути, верно.
Поделитесь своими знаниями, ответьте на вопрос:
Уровнения по ВЫШ МАТУ (Дифиренциальные уровнения 1 - 2 очереди
х×%*^*¥£€₽(:)₽€£¥
Объяснение:
ВОТ