Дробь не имеет смысла если её знаменатель равен нулю т.к. на ноль делить нельзя.
\dfrac{x}{x-4} ;\; x-4=0;\; \bold{x=4} dfrac{2b^2-9}{b(b-5)} ;\; b(b-5)=0;\; \bold{b=\{0;5\}}.
Дробь равна нулю если числитель равен нулю, а знаменатель - не равен.
\dfrac{x+1}{x} =0;\; \begin{Bmatrix}x+1=0\\x\ne 0\end{matrix} \\\begin{Bmatrix}x=-1\\x\ne 0\end{matrix} \qquad \bold{x=-1}dfrac{x(x-2)^2 }{x-2} =0;\; \begin{Bmatrix}x(x-2)^2 =0\\x-2\ne 0\end{matrix} \\\begin{Bmatrix}x=\{0;2\}\\x\ne 2\end{matrix} \qquad \bold{x=0}.
Объяснение:
удачи получить хорошую отметку
Поделитесь своими знаниями, ответьте на вопрос:
Докажите, что F(x)=x * кубический корень на x - sin2x + 3 если первообразная для функции f(x) = 4/3 кубический корень на x - 2 cos2x на (0 ; +∞
(tgxdx/cos²x)=-ctgydy/sin²y
интегрируем
∫(tgxdx/cos²x)=-∫ctgydy/sin²y
или
∫tgxd(tgx)=∫ctgyd(ctgy)
tg²x/2=ctg²y/2+с
или
умножим на 2 и обозначим С=2с
tg²x=ctg²y+С
О т в е т. tg²x=ctg²y+С
2) Уравнение, допускающее понижение порядка.
Замена переменной
y`=z
y``=z`
z`-hz=0
Уравнение с разделяющимися переменными
dz/dx=hz⇒ dz/z=hdx
интегрируем
∫(dz/z)=∫hdx;
ln|z|=hx+c
z=e^(hx+c)=C₁eˣ
y`=C₁eˣ- уравнение с разделяющимися переменными
у=С₁eˣ+C₂
О т в е т. у=С₁eˣ+C₂
3) Уравнение второго порядка с постоянными коэффициентами.
Составляем характеристическое уравнение
k²+2k+5=0
D=4-4·5=-16
√D=4i
k₁,₂=(-2±4i)/2=-1±2i
Общее решение имеет вид
у=e⁻ˣ(С₁cos2β+C₂sin2β)
О т в е т. у=e⁻ˣ(С₁cos2β+C₂sin2β)