x2 + 4x + 8 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 42 - 4·1·8 = 16 - 32 = -16
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 12x + 9 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-12)2 - 4·4·9 = 144 - 144 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:
x = 122·4 = 1.5
3x2 - 4x - 1 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-4)2 - 4·3·(-1) = 16 + 12 = 28
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 4 - √282·3 = 23 - 13√7 ≈ -0.21525043702153024
x2 = 4 + √282·3 = 23 + 13√7 ≈ 1.5485837703548635
2x2 - 9x + 15 = 0 Найдем дискриминант квадратного уравнения: D = b2 - 4ac = (-9)2 - 4·2·15 = 81 - 120 = -39 Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.Все эти уравнения - биквадратные, то есть, такие, которое сводятся к квадратным с замены x^2=t.
1. x^4-50x^2+49=0
Замена x^2=t, t>=0
t^2-50t+49=0
D=2500-4*49=2304=48^2
t = (50+48)/2 = 49
t = (50-48)/2 = 1
x^2=49
x^2=1
x = +-7
x = +-1
2. x^4-5x^2-36=0
Замена x^2=t, t>=0
t^2-5t-36=0
D=25-4*(-36)=169=13^2
t=(5+13)/2 = 8
t=(5-13)/2=-4<0 - не удовлетворяет ОДЗ
x^2=8
х = +-2√2
3. 4х^4-21х^2+5=0
Замена x^2=t, t>=0
4t^2-21t+5=0
D=441-4*4*5=361=19^2
t = (21+19)/8=5
t = (21-19)/8=1/4
x^2 = 5
x^2 = 1/4
x = +-√5
x = +-1/2
4. 3x^4+8x^2-3=0
Замена x^2=t, t>=0
3t^2+8t-3=0
D=64-4*3*(-3)=100=10^2
t=(-8+10)/6=1/3
t=(-8-10)/6=-3<0 - не удовлетворяет ОДЗ
x^2=1/3
x = +-1/√3 = +-√3/3
5. x^4-82x^2+81=0
Замена x^2=t, t>=0
t^2-82t+81=0
По теореме Виета:
t=81
t=1
x^2=81
x^2=1
x=+-9
x=+-1
Поделитесь своими знаниями, ответьте на вопрос:
В треугольнике ABC угол А в 3 раза больше угла В, а угол с в 2 раза больше угла A. Вычислите величины углов треуголь- ника ABC
a = 54˚
b = 18˚
c = 108˚
Объяснение: