карпова581
?>

Дано квадратное уравнение x^2−14, 2x−2, 9=0, укажи сумму и произведение корней. x1+x2= x1⋅x2=

Алгебра

Ответы

elenabarskova7145
Пусть в стелаже n полок.
Задачу будем решать при формул арифметической прогрессии.
аn = a1 +(n -1)d
Sn = n(a1 +an)/2

an - это в нашем случае число книг на последней полке, а1 - соответственно число книг на первой полке (21 книга). Sn - сумма книг с 1 по n, т.е.  всего книг.

При 1 случае расстановки d = 5, т.к. на каждой полке книг прибавляется на 5
n - полок
а1 =21
аn = 21 + (n - 1)*5  - книг на последней полке
Sn1 = n(a1 +an)/2 = n(21 + 21 + (n - 1)*5) = n(42 + 5n -5) = n(5n +37) = 5n² + 37n

При 2 случае расстановки d = 6, т.к. на каждой полке книг прибавляется на 6
(n -1) - полок, т.к. полок на 1 меньше
а1 =21
аn = 21 + ((n -1)- 1)*6  - книг на последней полке
Sn2 = (n-1)(21 + 21 + (n -1 - 1)*6) = (n - 1)(42 + 6n -12) = (n-1)(6n +30) = 6n² + 30n -6n -30 = 6n² + 24n  -30 

Т.к. кол-во книг одинаково, то приравняем  S1=S2
5n² + 37n = 6n² + 24n -30
n² - 13n -30 =0
Д = 169 +120 = 289
√Д = 17
n =(13 + 17)/2 = 15
ответ: в  стелаже 15 полок.
Nikolaevna382
Решение:
Сперва определим ОДЗ неравенства. Очевидно, что значение x не должно совпадать со значением 2.
Поскольку, знаменатель - это неотрицательное число, то числитель тоже не должен быть отрицательным.
Решается методом интервалов. В силу того, что сама дробь должна быть больше 0, то числитель тоже должен быть больше 0 (про знаменатель уже сказали). Как решать неравенство методом интервалов? На вашем примере, думаю, будет все ясно.
Находим нули функций (иными словами, находим те значения x, так, чтобы функция была равна 0 и соблюдалось ОДЗ). Это: x=-2;3;4. Отмечаем значения на числовом луче. Определяем знакопостоянство: если x<-2, то числитель отрицателен (отмечаем на луче). При всех остальных значениях числитель - положительный (за исключением x=2, потому что при этом значении знаменатель обращается в нуль, а мы знаем,что на 0 делить нельзя). Получили интервал: отрицательный: (-\infty;-2)
И положительный: (-2;3) (рис. 2)
Далее, снова отрицательный: (3;4)
И положительный: (4; \infty)
Но, в условии сказано: найти кол-во целых отрицательных чисел, удовлетворяющих неравенству. Опять же, обращаясь к нашему промежутку чисел, находим, что их только 2: -2 и -1. Однако, -2 обращает дробь в 0, поэтому, число только одно.
ответ: -1

Найдите количество целых отрицательных решений неравенства объясните

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Дано квадратное уравнение x^2−14, 2x−2, 9=0, укажи сумму и произведение корней. x1+x2= x1⋅x2=
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

tenvalerij
avdushinalizza1
Chausmonk4
АндреевичОльга641
Разложить на множители: х4+х2+1
Andrei
Иванникова736
Likhomanova63
Shalito
Матфеопуло1006
Tselyaritskaya Yurevich
Геннадьевна Вета560
obelov
sergeystepanov231
muravlev2702
lyukiss