Во-первых на конце четырёхзначного числа ноля быть не может, т.к. при его вычеркивании трехзначное число будет в 10 раз меньше, что не подходит по условию задачи.
Во-вторых на первом месте ноля тоже быть не может, т.к. это будет уже не четырехзначное число.
Вывод: в четырехзначном числе ноль находится на втором, либо на третьем месте
Пусть ноль стоит на втором месте, тогда представим четырёхзначное число в виде: [x 0 y z] при вычеркивании ноля, получим [x y z]
Запишем уравнение
1000x + 10y + z = 9 ( 100x + 10y + z)
1000x + 10y + z = 900x + 90y + 9z
8z = 100x - 80y
z = 12,5x - 10y
Из данного уравнения видно, что произведение 12,5Х должно быть числом целым, это возможно при Х = 2, 4, 6, 8. Незабываем, что цифры из которых состоит число, лежат в пределах от 0 до 9 !
1) Пусть х =2 , тогда
z = 12,5 * - 10y = 25 - 10y
при подборе числа Y учитываем, что разница должна быть положительной величиной и быть не более 9, это число y =2
Тогда z = 25 - 10 * 2 = 5
Окончательно запишем число: 2025
2) Пусть х =4 , тогда
z = 12,5 *4 - 10y = 50 - 10y
при подборе числа Y учитываем, что разница должна быть положительной величиной и быть не более 9, это число y =5
Тогда z = 50 - 10 * 5 = 0
Окончательно запишем число: 4050 - не подходит, т.к. здесь два ноля, что не соответствует условию задачи
3) Пусть х =6 , тогда
z = 12,5 *6 - 10y = 75 - 10y
при подборе числа Y учитываем, что разница должна быть положительной величиной и быть не более 9, это число y =7
Тогда z = 75 - 10 * 7 = 5
Окончательно запишем число: 6075
4) Пусть х =8 , тогда
z = 12,5*8 - 10y = 100 - 10y
при подборе числа Y учитываем, что разница должна быть положительной величиной и быть не более 9, нет такого числа
Пусть ноль стоит на третьем месте, тогда представим четырёхзначное число в виде: [x y 0 z] при вычеркивании ноля, получим [x y z]
Запишем уравнение
1000x + 100y + z = 9 ( 100x + 10y + z)
1000x + 100y + z = 900x + 90y + 9z
8z = 100x + 10y
z = 12,5x + 1,25y - не имеет решения видно, т.к. при любых значениях Х и У (кроме нуля) , число Z > 9.
ответ: 2-а числа
d = 8/5
Объяснение:
5x^2-6x+d=0
Пусть
x_1 = 2x_2, где
x_1 - первый корень квадратного уравнения
x_2 - второй корень квадратного уравнения,
тогда по теореме Виета (дла случая а≠1) запишем систему:
(x_2)*(2x_2)= d/5;
x_2+2x_2= 6/5;
решаем:
2*(x_2)^2=d/5;
3x_2=6/5;
далее:
2(x_2)^2=d/5;
x_2=6/(5*3) = 2/5;
подставим в первое уравнение
2*((2/5)^2)=d/5;
d/5= 2*4/25=8/25;
d/5=8/25;
d=40/25=8/5
Проверка:
5x^2-6x+8/5=0
D=6^2-4*5*8/5=36-32=4;
x_12=1/10*(6±√(4));
x_1= 8/10; x_2=4/10
x_1/x_2=(8/10)/(4/10)=2 как в условии!
x_1*x_2=8/10*4/10=32/100=8/25=d/5 - правильно
x_1+x_2=4/10+8/10=12/10=6/5=-(-6)/5 - верно!
Поделитесь своими знаниями, ответьте на вопрос:
Найдите значение выражения 2, 5а³в², если а=-2, в=5
Объяснение:
2,5*(-2)³*5²=2,5*(-8)*25= - 500.