anchutk3016
?>

. (7-k)(7+k)+(k+3), npn k = -0, 5​

Алгебра

Ответы

Роман

1)  У числа n три различных простых делителя.

У числа 11n тоже три делителя.

Значит, один из делителей числа n равен 11.

n = 11 · х · у

2)  У числа 6n ровно 4 различных простых делителя.

Учитывая, что 6 = 2 · 3

получаем:

6n = 11 · 2 · у · 3

По условию все простые делители должны быть различными.

Значит, у ≠ 2

            у ≠ 3

             у ≠ 11

С учетом этого наименьшим из множества простых чисел будет

число 5.

Получаем у = 5    

Наименьшее число 6n = 2 · 3 · 5 · 11 = 330

3)  У числа n обязательно будут делители 5 и 11, а из делителей 2 и 3   выбираем наименьший делитель 2 и получаем:

n =  2 · 5 · 11 = 110

1 + 1 + 0 = 2  - это и есть сумма цифр наименьшего числа n = 110.

ответ: 2

Corneewan
ax^2-(a^2+5)x+3a-5=0

 Если  у  данного  уравнения существуют два различных натуральных корня X1 и X2 , то   их  сумма и произведение -  тоже натуральные числа.  тогда  по теореме Виета:

x_{1} *x_{2} = \frac{3a-5}{a} \\

 \frac{3a-5}{a} = n_{1} ,    где   n1  -   нат. число.  Тогда

3a-5 = n_{1}*a \\
Правая часть данного равенства делится на a,  значит и левая должна тоже делиться на a.  Слева имеем сумму двух слагаемых,  чтобы это сумма делилась на a,  надо чтобы оба слагаемых делились на a.

3a  делится на а,  и 5 должно делиться на а.  Т.о.  а∈{ -5, -1, 1, 5}.
 
Подставляем поочередно эти  значения а  в  выражение \frac{3a-5}{a} .

a=-5, \frac{3*(-5)-5}{-5}= \frac{-20}{-5}= 4 \\ 
a=-1, \frac{3*(-1)-5}{-1}= \frac{-8}{-1}= 8 \\ 
a=1, \frac{3*1-5}{1}= \frac{-2}{1}= -2 \\ 
a=5, \frac{3*5-5}{5}= \frac{10}{5}= 2 \\

Т.о.  натуральное значение  выражение принимает при а=-5,  а=-1 и а=5.
По  т.Виета x_{1} + x_{2} = \frac{a^2+5}{a} \\
Проверим при каких из этих значений сумма корней исходного уравнения будет  натуральным числом:

a=-5; \frac{(-5)^2+5}{-5} = \frac{30}{-5} = -6 \\ 
a=-1; \frac{(-1)^2+5}{-1} = \frac{6}{-1} = -6 \\ 
a=5; \frac{5^2+5}{5} = \frac{30}{5} = 6 \\

Итак, уравнение может иметь два различных натуральных корня только при  a=5.  Проверим  будут ли этом значении  а  корни исходного уравнения натуральными числами.  
При   a=5.  уравнение примет вид:  
 5 x^{2} - 30x +10 =0 \\ 
 x^{2} - 6x +2 =0 \\
D = 28

значит корни будут иррациональными.

ответ:  ∅.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

. (7-k)(7+k)+(k+3), npn k = -0, 5​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

dimiff5
Vitalik6928
Nikolaevich1534
mayorovmisc6
nusupova
ntyremsk1
Larisa-0888716
k-alexey9
kashihina
schernov
Васильев1028
Alesander-Isaev684
Vasilevna_Utenkova651
sergeevna
rayon14