Решение.
Пусть первый кран работал (n − 1)d + 8 часов, тогда второй кран работал (n − 2)d + 8 часов, ..., n-й кран — 8 часов. Тогда
дробь, числитель — (n минус 1)d плюс 8, знаменатель — 8 = дробь, числитель — 5, знаменатель — 1 равносильно (n минус 1)d=32,
(n минус 1)d плюс 8 плюс (n минус 2)d плюс 8 плюс ... плюс 8=d умножить на дробь, числитель — (n минус 1)n, знаменатель — 2 плюс 8n=16n плюс 8n=24n.
Получаем, что для заполнения сосуда требуется 24n часов работы. Если все краны открываются одновременно, то для пополнения всего сосуда потребуется дробь, числитель — 24n, знаменатель — n =24 часа.
Объяснение:
2,5 (часа) пароход по течению реки.
1,5 (часа) пароход против течения реки.
Объяснение:
Пароход по течению реки и против течения путь 68 км за 4 часа. Сколько времени он двигался против течения и по течению реки (отдельно), если по течению он двигался со скоростью 20 км / ч, а против течения - 12 км / ч?
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - расстояние по течению
у - расстояние против течения
х/20 - время по течению
у/12 - время против течения
По условию задачи составляем систему уравнений:
х+у=68
х/20 + у/12 =4
Преобразуем второе уравнение, умножим его на 240, чтобы избавиться от дроби:
12х+20у=960/4 для упрощения:
3х+5у=240
Выразим х через у в первом уравнении, подставим выражение во второе уравнение и вычислим у:
х=68-у
3(68-у)+5у=240
204-3у+5у=240
2у=240-204
2у=36
у=18 (км) - расстояние против течения.
х=68-у
х=68-18
х=50 (км) - расстояние по течению.
Скорость по течению и против течения известны, можем вычислить время:
50/20=2,5 (часа) пароход по течению реки.
18/12=1,5 (часа) пароход против течения реки.
Поделитесь своими знаниями, ответьте на вопрос:
Найдите область значения функции у=х^2-4.
X=-2'x2=(27899000000)=2