Для суммы бесконечно убывающей геометрической прогрессии справедлива формула:
Значит для второй и третьей последовательности (квадратов и кубов) справедливо:
Нам известно, что:
И известно:
Получаем:
Получаем уравнение
Перебором делителей свободного члена находим, что корнем является q = 1 (который, нам, однако, не подходит, поскольку |q| должен быть меньше 1 т.к. прогрессия бесконечно убывает) и поделив на q - 1 получаем:
Находя корни квадратного уравнения, получаем:
Из которых (по причине, описанной ранее) подходит только 1/4.
Дальше из условия находим, что , а третий член равен