Y = x³ - 6x² - 15x - 2 1. Находим интервалы возрастания и убывания. Первая производная. f'(x) = 3x² - 12x - 15 Находим нули функции. Для этого приравниваем производную к нулю 3x² - 12x - 15 = 0 Откуда: x₁ = -1 x₂ = 5 (-∞ ;-1) f'(x) > 0 функция возрастает (-1; 5) f'(x) < 0 функция убывает (5; +∞) f'(x) > 0 функция возрастает В окрестности точки x = -1 производная функции меняет знак с (+) на (-). Следовательно, точка x = -1 - точка максимума. В окрестности точки x = 5 производная функции меняет знак с (-) на (+). Следовательно, точка x = 5 - точка минимума.
irohmichaelchikaodiri
07.08.2022
Решение Найдите координаты точек, в которых касательные к графику функции y = (x + 1)/(x - 3), имеющие угловой коэффициент k = - 1, пересекают ось абсцисс. Найдем координаты точек, в которых касательные к графику имеют угловой коэффициент угловой коэффициент k = - 1. k = y` = [(x + 1)/(x - 3)]` = [x - 3 - (x + 1)] / (x - 3)² = = - 4 /(x - 3)² y` = - 1 - 4 / (x - 3)² = - 1 x² - 6x + 9 = 4 x² - 6x + 5 = 0 x₁ = 1 x₂ = 5 y₁ = - 1 y₂ = 3 Запишем уравнения этих касательных: 1) y = - (x - 1) - 1 2) y = - (x - 5) + 3 Касательные пересекают ось абсцисс, значит, y = 0 Таким образом, если у = 0, то 1) y = - (x - 1) - 1 - (x - 1) - 1 = 0 x = 0 2) y = - (x - 5) + 3 - (x - 5) + 3 = 0 x = 8 ответ: (0; 0) ; (8; 0)
2) y = √x y₀ = 2 y = y(x₀) + y`(x₀)*(x - x₀) - уравнение касательной если у₀ = 2, то 2 = √x x₀ = 4 абсцисса точки а) y(x₀) = y(4) = √4 = 2 б) y` = 1/2√x y` = 1/2√4 = 1/(2*2) = 1/4 в) y = 2 + (1/4)*(x - 4) y = 2 + (1/4)*x - (1/4)*4 y = 2 + (1/4)*x - 1 y = (1/4)*x + 1 - уравнение касательной в точке
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Дроби с общим знаменателем ( три дроби разность квадратов)
Правильный ответ - это второй вариант.