2) Последовательность bn-геометрическая прогрессия. Найдите b7, если b4=20,q=0.3 b4=b1*0.3^3=20 b1*0/027=20 b1=20/0.03^3 b7=b1*q^6=20/0.3^3*0.3^6=20*0.3^3=0.54 3)Найдите номер члена геометрической прогрессии bn=972, b1=4 q=3 bn=b1*q^(n-1) 972=4*3^(n-1) 3^(n-1)=972/4=243=3^5 n-1=5 n=6 4) Найдите первый член и знаменатель геометрической прогрессии bn, если bn=5/3в степени n b2/b1=q (5/3)^2 : (5/3)=q q=5/3 b1=b1*q^(0) b1=(5/3)^1*1=5/3 b1=q=5/3 5)Найдите знаменатель геометрической прогрессии q, если b1+b4=54, b7+b4=2 Решение надо b1+b4=54 b7+b4=2 b1+b1q^3=54 b1q^6+b1q^3=2 b1(1+q^3)=54 b1q^3(1+q^3)=2 делим это на предыдущее q^3=2/54=1/27=1/3^3 q=1/3
Количество целых решений неравенства 7/(x² -5x+6) +9/(x-3) < -1, принадлежащих отрезку [-6;0) равно:
* * * x²+px + q =(x -x₁)(x - x₂) * * *
7/(x² -5x+6) +9/(x-3) < -1⇔7/(x -2)(x-3) +9/(x-3) +1 < 0⇔
(7 + 9x-18 + x² -5x+6 ) / (x -2)(x-3) < 0 ⇔( x² +4x- 5) / (x -2)(x-3) < 0 ⇔
( x +5)(x- 1) / (x -2)(x-3) < 0 ⇔ ( x +5)(x -1)(x -2)(x-3) < 0
"+" " - " "+" "-" "+"
(-5) (1) (2) ( 3)
x ∈( - 5; 1) ∪ (2 ; 3)
Количество целых решений неравенства , принадлежащих отрезку [-6;0) равно: (-4) +(-3) +(-2) +(-1) = -10 .
ответ: -10.