D-posilochka
?>

1 система уравнения с корнем

Алгебра

Ответы

Попов1946
Task/27145483

Количество целых решений неравенства 7/(x² -5x+6) +9/(x-3) < -1, принадлежащих отрезку [-6;0) равно:

* * *  x²+px + q =(x -x₁)(x - x₂)  * * *
7/(x² -5x+6) +9/(x-3) < -1⇔7/(x -2)(x-3) +9/(x-3) +1 < 0⇔
(7 + 9x-18  + x² -5x+6 ) / (x -2)(x-3) < 0 ⇔( x² +4x- 5) / (x -2)(x-3) < 0 ⇔
( x +5)(x- 1) / (x -2)(x-3) < 0 ⇔ ( x +5)(x -1)(x -2)(x-3) < 0
       "+"                  " - "              "+"                 "-"                  "+"     
(-5) (1) (2) ( 3)
x ∈( - 5; 1) ∪ (2 ; 3) 
Количество целых решений неравенства , принадлежащих отрезку [-6;0) равно: (-4) +(-3) +(-2) +(-1)  = -10 .

ответ: -10.
Викторович Попков
Bn=b1*q^(n-1)
1)Даны последовательные члены геометрической последовательности 12,с,27.Найдите с?
b3/b1=27/12=9/4=q^2
q=3/2
c=b2=12*3/2=18
q=-3/2
c=b2=12*(-3/2)=-18

2) Последовательность bn-геометрическая прогрессия. Найдите b7, если b4=20,q=0.3
b4=b1*0.3^3=20
b1*0/027=20
b1=20/0.03^3
b7=b1*q^6=20/0.3^3*0.3^6=20*0.3^3=0.54
3)Найдите номер члена геометрической прогрессии bn=972, b1=4 q=3
bn=b1*q^(n-1)
972=4*3^(n-1)
3^(n-1)=972/4=243=3^5
n-1=5
n=6
4) Найдите первый член и знаменатель геометрической прогрессии bn, если bn=5/3в степени n
b2/b1=q
(5/3)^2 : (5/3)=q
q=5/3
b1=b1*q^(0)
b1=(5/3)^1*1=5/3
b1=q=5/3
5)Найдите знаменатель геометрической прогрессии q, если b1+b4=54, b7+b4=2
Решение надо
b1+b4=54
b7+b4=2
b1+b1q^3=54
b1q^6+b1q^3=2
b1(1+q^3)=54
b1q^3(1+q^3)=2 делим это на предыдущее
q^3=2/54=1/27=1/3^3
q=1/3
1)даны последовательные члены последовательности 12,с,27.найдите с? 2) последовательность bn- прогре

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

1 система уравнения с корнем
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Talikova164
alena
Ромеовна1527
mgg64
sadkofamily61
ninakucherowa
Mydariamiro
Татьяна-Мария
Annabill1987
timpavilion23
galustyanvitaly4842
sergeymartyn56
bondarev05071962
avn23
Дмитриевич_Скрябин931