Пусть x км/ч — скорость второго автомобиля, тогда (x + 10) км/ч — скорость первого автомобиля. Они встретились через 3 часа. За это время второй автомобиль проехал 3x км, а первый автомобиль — 3(x + 10) км. Используя эти данные и условия задачи, составим уравнение и решим его:
3(x + 10) + 3x = 450,
3x + 30 + 3x = 450,
6x = 450 - 30,
6x = 420,
x = 420 / 6,
x = 70 км/ч.
Мы нашли скорость второго автомобиля. Теперь найдем скорость второго автомобиля:
70 + 10 = 80 км/ч.
ответ: скорость первого автомобиля равна 80 км/ч, скорость второго автомобиля — 70 км/ч.
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Решите надо. 1. Функция задана формулой у=4х-2. Найдите: 1) значение функции, если значение аргумента равно: 0; -2; 2, 5; 2) значение аргумента, при котором значение функции равно 0; 2; -7. 2. Постройте график функции: 1) у= х+2 2) у= -3х+1 3) у=-3х 4) у=4х 3. Постройте в одной системе координат графики линейных функций у=3 и у =-1. 4. Постройте в одной системе координат графики функций и укажите координаты точки их пересечения: у=х-3 и у=2х-1 Для каждой функции давать полное словесное описание.
Пусть x км/ч — скорость второго автомобиля, тогда (x + 10) км/ч — скорость первого автомобиля. Они встретились через 3 часа. За это время второй автомобиль проехал 3x км, а первый автомобиль — 3(x + 10) км. Используя эти данные и условия задачи, составим уравнение и решим его:
3(x + 10) + 3x = 450,
3x + 30 + 3x = 450,
6x = 450 - 30,
6x = 420,
x = 420 / 6,
x = 70 км/ч.
Мы нашли скорость второго автомобиля. Теперь найдем скорость второго автомобиля:
70 + 10 = 80 км/ч.
ответ: скорость первого автомобиля равна 80 км/ч, скорость второго автомобиля — 70 км/ч.
Объяснение: