2) Пусть аn есть арифметическая прогрессия. Если а1=-10 и а3=-4, с характеристического свойства найдите а2. Определите значение девятого члена прогрессии.
а) а₁ = -10;
а₃ = -4;
а₂ = ?
а₂ = (а₁ + а₃)/2
а₂ = (-10 - 4)/2
а₂ = -14/2
а₂ = -7;
б) a₉ = ?
an = a₁ + d(n - 1);
а₉ = а₁ + d(n - 1);
Найти d:
d = a₂ - a₁;
d = -7 - (-10)
d = -7 + 10
d = 3;
а₉ = а₁ + d(n - 1);
а₉ = (-10) + 3(9 - 1)
а₉ = (-10) + 24
а₉ = 14.
3) в арифметической прогрессии (аn) известно, что d=2,a1=5. Найти s13.
а₁ = 5;
d = 2;
S₁₃ = ?
Формула:
Sn = ((2a₁ + d(n - 1))/2 * n
S₁₃ = (2 * 5 + 2 * 12)/2 * 13
S₁₃ = (10 + 24)/2 * 13
S₁₃ = 17 * 13
S₁₃ = 221.
d892644813661946
09.01.2022
Если ты не умеешь применять теорему виета, то пиши в комментарях, я научу x²-8x+7 > 0 (х-1)(х-7) > 0 х € (-∞ ; 1 )( 7 ; +∞) x²+3x-54 < 0 (х+9)(х-6) < 0 х € ( -9 ; 6 ) 1/2x²+0,5x-1 > 0 x²+ x – 2 > 0 (х-1)(х+2) > 0 х € (-∞ ; -2 )( 1 ; +∞) 5x²+ 9,5x-1 < 0 10х²+19х–2 < 0 (х-1/10)(х+20/10)< 0 х € (-2 ; 0,1 ) -x²-3x+4> 0 x²+3x–4> 0 (х+4)(х-1)> 0 х € (-∞ ; -4 )( 1 ; +∞) -8x²+17x-2 ≤ 0 8x²-17x+2 ≤ 0 (х-16)(х-1) ≤ 0 х € [ 1 ; 16 ] дальше лень печатать (-∞ ; 3 )( 3 ; +∞) -12 нет корней (-∞ ; +∞) (-∞ ; 0,5 )( 0,5 ; +∞) нет корней
В решении.
Объяснение:
2) Пусть аn есть арифметическая прогрессия. Если а1=-10 и а3=-4, с характеристического свойства найдите а2. Определите значение девятого члена прогрессии.
а) а₁ = -10;
а₃ = -4;
а₂ = ?
а₂ = (а₁ + а₃)/2
а₂ = (-10 - 4)/2
а₂ = -14/2
а₂ = -7;
б) a₉ = ?
an = a₁ + d(n - 1);
а₉ = а₁ + d(n - 1);
Найти d:
d = a₂ - a₁;
d = -7 - (-10)
d = -7 + 10
d = 3;
а₉ = а₁ + d(n - 1);
а₉ = (-10) + 3(9 - 1)
а₉ = (-10) + 24
а₉ = 14.
3) в арифметической прогрессии (аn) известно, что d=2,a1=5. Найти s13.
а₁ = 5;
d = 2;
S₁₃ = ?
Формула:
Sn = ((2a₁ + d(n - 1))/2 * n
S₁₃ = (2 * 5 + 2 * 12)/2 * 13
S₁₃ = (10 + 24)/2 * 13
S₁₃ = 17 * 13
S₁₃ = 221.