Y=(x+1)^2-2 Этот график получается из графика y1=x^2 с сдвига на вектор с координатами (-1;-2), т.е с сдвигом вдоль оси ох на 1 влево, и вдоль оси оу на 2 вниз. График является параболой, т.е нам достаточно пять точек. чтобы было проще мы возьмем координату вершины параболы, и точки пересечения с осями. Чтобы было легче раскроем скобки и приведем подобные: y=x^2+2x-1 Координаты вершины нахожим по формуле: X=-b/2a=-2/2=-1. Y=-2. Точки пересечения с осью ох, когда y=0; x^2+2x-1=0 D/4=5; т.к х-иррациональное число, то мы возьмем другие координаты. Точки пересечения с осью оу: х=0, у=-1. У нас есть две точки, нам нужно еще три. Выберем абсолютно любые х и найдем значение у. Я взяла х=-2; у=-1; Х=1, у=2; Х=-3, у=2. Теперь запишем это в таблицу значений. Х | -3 | -2 | -1 | 0 | 1
3. 1) 3.3, 2) 2.7, 3)3.2, 4)2.8 Значение второго выражения наименьшее.
4. 35:(-7)+5=-5+5=0
5. |-9|+|11|=9+11=20
6. 2(x-8)+4x=2x-16+4x=6x-16=2(3x-8)
7. S=Vt, где S - расстояние, V - скорость движения, t - время S'=V1t+V2t=t(V1+V2), S' - расстояние, которое автомобили пройдут за t времени, т.е. 3 часа, так как автомобили едут навстречу друг другу. S=S'+365, так как через 3 часа расстояние между автомобилями будет 365 км 3*(75+40)+365=345+365=710 Расстояние между городами 710 км.
Этот график получается из графика y1=x^2 с сдвига на вектор с координатами (-1;-2), т.е с сдвигом вдоль оси ох на 1 влево, и вдоль оси оу на 2 вниз. График является параболой, т.е нам достаточно пять точек. чтобы было проще мы возьмем координату вершины параболы, и точки пересечения с осями. Чтобы было легче раскроем скобки и приведем подобные: y=x^2+2x-1
Координаты вершины нахожим по формуле:
X=-b/2a=-2/2=-1. Y=-2.
Точки пересечения с осью ох, когда y=0; x^2+2x-1=0
D/4=5; т.к х-иррациональное число, то мы возьмем другие координаты. Точки пересечения с осью оу: х=0, у=-1. У нас есть две точки, нам нужно еще три. Выберем абсолютно любые х и найдем значение у. Я взяла х=-2; у=-1;
Х=1, у=2;
Х=-3, у=2.
Теперь запишем это в таблицу значений.
Х | -3 | -2 | -1 | 0 | 1
У | 2 | -1 | -2 | -1 | 2