Сначала разберём таблицу. В первой строке - значения выборки, вторая строка - показывает сколько раз каждое значение встречается в выборке. Таким образом полная выборка будет такой: 2; 5; 5; 5; 7; 7; 8; 8; 8; 8. Количество значений в выборке будет равно 10 (это обозначается так n = 10).
1) Среднее арифметическое = (2 · 1 + 5 · 3 + 7 · 2 + 8 · 4) / 10 = 6,3
2) Дисперсия обозначается S² и вычисляется по формуле: сумму разностей квадратов значения выборки и её среднего арифметического поделить на (n-1). Получаем
S² = ( (2 - 6,3)² + (5 - 6,3)² + (5 - 6,3)² + (5 - 6,3)² + (7 - 6,3)² + (7 - 6,3)² + (8 - 6,3)² + (8 - 6,3)² + (8 - 6,3)² + (8 - 6,3)² ) / 10 - 1 = 4,01
3) Среднее квадратическое отклонение обозначается буквой ω:
ω = √S² = √4,01 = 2,002
4) Мода - это значение встречающееся в выборке чаще других, то есть
мода = 8
Если выборка содержит нечетное количество элементов, медиана равна (n+1)/2-му элементу.
Если выборка содержит четное количество элементов (как в нашем случае), медиана лежит между двумя средними элементами выборки и равна среднему арифметическому, вычисленному по этим двум элементам. То есть
медиана = (7 + 7) / 2 = 7
составим систему (4-х)/х≥0 4-х≥0 х≤4
х≠0 х≠0 х≠0
х/2+1≥0 х+2≥0 х≥-2
координатная прямая
пересечение множеств [-2; 4]? но т.к. 0 не принадлежит (выколотая точка) ⇒
ответ: [-2; 0)ü(0; 4]
Поделитесь своими знаниями, ответьте на вопрос:
Введите здесь ваше решить уравнения с модулями: i x-3i=2 ixi+1=7 i 3x=2 i-4=0
1)ix-3i=2
2)ixi+1=7
ixi=6
3)i3x+2i-4=0
i3x+2i=4