maxborod
?>

В закрепе третье и пятое задание решить

Алгебра

Ответы

yugraspets
ОДЗ:
{x²-y²>0;
{x+y>0

2^{2+log_{2}(x^2+y^2)}=2^2\cdot2^{log_{2}(x^2+y^2)}=4\cdot(x^2+y^2)

{lg(x^2-y^2)-lg(x+y) =0
{4·(x²+y²)=20

{lg(x²-y²)=lg(x+y)
{x²+y²=5

{x²-y²=x+y
{x²+y²=5

{(x-y)(x+y)-(x+y)=0
{x²+y²=5

{(x+y)(x-y-1)=0
{x²+y²=5
Система заменяется совокупностью двух систем:
{x+y =0     или   {х - у - 1=0 
{x²+y²=5    или   {x²+y²=5

Решаем первую систему подстановки
{y=-x
{2x²=5

{x₁=-√2,5  {x₂=√2,5
{y₁=√2,5   {y₂=-√2,5

 х₁-y₁=0
х₂²-у₂²=0
решения системы не удовлетворяют ОДЗ

Решаем вторую систему подстановки
{y=x-1
{x²+(x-1)²=5

x²+x²-2x+1=5
2x²-2x-4=0
x²-x-2=0
{x₃=-1   { x₄=2
{y₃=-2   {y₄=1

х₃²-у₃²=(-1)²-(-2)²<0  не удовлетворяет ОДЗ
О т в е т. (2;1)
aedunova3
Сумма членов прогрессии S1=b1/(1-q)=3/8, откуда b1=3/8*(1-q). Сумма кубов членов прогрессии S2=b1³*(1-q³)=27/224, откуда b1³=27/224*(1-q³). Возводя выражение для b1 в куб, получаем уравнение 27/512*(1-q)³=27/224*(1-q³), которое приводится к квадратному уравнению 3*q²+10*q+3=0. Его корни q1=-1/3 и q2=-3. Но если модуль q≥1, то бесконечная прогрессия расходится, то есть не может иметь суммы. А это противоречит условию. поэтому q=-1/3. Тогда b1=3/8*(1-q)=1/2. Сумма квадратов членов прогрессии S3=b1²/(1-q²)=9/32. ответ: 9/32.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

В закрепе третье и пятое задание решить
Ваше имя (никнейм)*
Email*
Комментарий*