Пусть х грамм масса одного вещества, а у грамм второго. Так как масса смеси, состоящей из двух вещество равна 900г, получим первое уравнение: х + у = 900. Тогда после того, как из этой смеси взяли первого вещества и 70% второго, в ней осталось первого вещества на 18г меньше, чем второго, получим следующее уравнение: (у - 70%у) - (х - 5/6х) = 18.
Необходимо найти остаток смеси х и остаток смеси у.
Найдём значение "х" и "у".
(у - 70%у) - (х - 5/6х) = 18 ;
100% - 70 % = 30 %;
Преобразуем уравнение:
30%у - 1/6х = 18;
3/10у - 1/6х = 18;
Найдём общий знаменатель:
3/10у * 6 - 1/6х * 10 = 18 * 60;
18/60у - 10/60х = 1080/60;
Сокращаем дроби:
18у - 10х = 1080;
10х = 18у - 1080;
Сокращаем на 10:
х = 1,8у - 108;
Теперь подставим значение х в первое уравнение, получим:
900 = х + у;
х = 900 - у;
х = 1,8у - 108;
900 - у = 1,8у - 108;
-2,8у = - 1008;
Упрощаем выражение:
-2,8у * (-1) = - 1008 * (-1);
2,8у = 1008;
у = 360 грамм;
х = 540 грамм;
Найдём остаток от "х" и "у".
у - 70%у = 0,3у = 0,3 * 360 = 108 грамм (столько осталось смеси у);
х - 5/6х = 1/6х = 1/6 * 540 = 90 грамм (столько осталось смеси х) ;
Проверяем:
После того, как из смесей выделили определенное количество, смесь у осталось на 18 грамм больше, чем смеси х.
Из этого следует:
(у - 70%у) - (х - 5/6х) = 18;
Подставляем значения:
108 - 90 = 18 ;
18 = 18 (Значения найдены верно);
ответ: Первого вещества осталось 90 грамм, а второго вещества осталось 108 грамм.
Поделитесь своими знаниями, ответьте на вопрос:
Реши систему уравнений: {x−9y=1y2−x=9 {x= y= {x= y= (Первым пиши решение с большим значением x)
D = 81-768=- 687
действительных корней нет
1) 4y^2 - 25y + 100=0
D = 625-1600, D<0 действительных корней нет
3) из условия знаменателя: х не равен -3 и 1/2. Далее по условию равенства нулю дроби:
(x+3)(x-2)=0
x+3=0 или x-2=0
x=-3 x=2
ответ: 2 (так как -3 не подходит по условию знаменателя)
4) Приведем к общему знаменателю:
(16(x^2-9)+x^2(x-6)-x^2(x+3))/(x^2(x^2-9)) = 0
x не равен 0, 3 и - 3
16(x^2-9)+x^2(x-6)-x^2(x+3)=0
16x^2-144+x^3-6x^2-x^3-3x^2=0
7x^2=144
x1=12/√7
x2=- 12/√7