2^x=a
(a²-8a+7)/(a²-5a+4)≤(a-9)/(a-4) +1/(a+6)
a²-8a+7=(a-1)(a-7)
a1+a2=8 U a1*a2=7⇒a1=1 U a2=7
a²-5a+4=(a-1)(a-4)
a1+a2=5 U a18a2=4⇒a1=1 U a2=4
(a-1)(a-7)/[(a-1)(a+4)≤(a-9)/(a-4) +1/(a+6)
(a-7)/(a-4)-(a-9)/(a-4) -1/(a+6)≤0, a≠1
[(a-7)(a+6)-(a-9)(a+6)-(a-4)]/[(a-4)(a+6)]≤0
[(a+6)(a-7-a+9)-(a-4)]/[(a-4)(a+6)]≤0
(2a+12-a+4)/[(a-4)(a+6)]≤0
(a+16)/[(a-4)(a+6)]≤0
a=-16 a=4 a=-6
_ + _ _ +
[-16](-6)(-1)(4)
a≤-16⇒2^x≤-16 нет решения
-6<a<-1⇒-6<2^x<-1 нет решения
-1<a<4⇒-1<2^x<4⇒x<2
x∈(-∞;2)
Відповідь:
Еще недавно, учась сложению чисел, мы складывали кучки из монет. Тогда перед нами стояла задачи сложить две кучки. Но допустим, мы хотим теперь сложить не две, а несколько кучек. Это можно было бы сделать так: сгребаем их все сразу в одну большую кучу и пересчитываем в ней все монеты. Такой сложения всем бы был хорош, да только ни на счетах, ни на бумаге нельзя сделать ничего подобного. На счетах и бумаге мы умеем складывать между собой только два числа. Поэтому мы не будем сгребать вместе сразу все кучки, а поступим так, чтобы все наши действия можно было легко перенести на бумагу.
Итак, перед нами несколько кучек из монет. Мы знаем, сколько монет в каждой кучке, и теперь мы хотим узнать, сколько же у нас всего монет во всех кучках. Мы берем любые две кучки и сдвигаем их вместе, образуя одну новую кучку побольше. Умея складывать два числа на бумаге, мы сможем легко вычислить, сколько у нас монет в новой кучке без фактического их пересчета. Теперь у нас стало на одну кучку меньше. Далее, берем еще две кучки, сливаем их воедино, вычисляем новое число монет в только что образованной кучке и, таким образом, снова уменьшаем количество кучек на одну. Мы повторяем и повторяем эту процедуру, уменьшая всякий раз число кучек на единицу, до тех пор пока у нас не останется одна-единственная большая куча. Число монет в этой куче нам известно, причем вычислили мы его на бумаге, а не прямым пересчетом.
Очевидно, мы получим один и тот же ответ, совершенно независимо от того, в каком порядке мы сдвигали кучки. А значит, когда перед нами находится сумма чисел, например,
8 + 9 + 2, мы можем вычислять ее тоже в любом порядке. Поэтому мы всегда будем выбирать такой порядок, какой для нас наиболее удобен. В данном случае удобно вначале сложить восьмерку и двойку, а потом добавить девятку:
8 + 2 + 9 = 10 + 9 = 19.
Поделитесь своими знаниями, ответьте на вопрос:
На листе бумаги нарисованы три пересекающиеся окружности, они образуют 7 областей. Будем называть две области соседними, если у них есть общая граница. Области, граничащие ровно по одной точке, не являются соседними. В две области уже вписаны числа. Впишите в оставшиеся 5 областей целые числа так, чтобы в каждой области число равнялось сумме всех чисел в соседних областях. Какое число должно стоять вместо знака во
-11
Объяснение:
Назовём верхнюю область А , нижнюю слева В , нижнюю справа С ,что нужно найти Х ,а посередине N .
Тогда N=14-3+Х ; В=14+Х ;С=Х-3 ; Х=В+N+С .
Сложим первые три уравнения получим : 11+14-3+3Х=B+N+C
Тогда справедливо что X=3X+22 ⇒ Х = -11