evada2
?>

Знайдіть точку максимуму функції f(x)= −12 + /3

Алгебра

Ответы

ОвчинниковаТатьяна

Квадратное уравнение и его корни. Неполные квадратные уравнения

Каждое из уравнений

x

2

+

6

x

+

1

,

4

=

0

,

8

x

2

7

x

=

0

,

x

2

4

9

=

0

имеет вид

a

x

2

+

b

x

+

c

=

0

,

где x - переменная, a, b и c - числа.

В первом уравнении a = -1, b = 6 и c = 1,4, во втором a = 8, b = —7 и c = 0, в третьем a = 1, b = 0 и c = 4/9. Такие уравнения называют квадратными уравнениями.

Определение.

Квадратным уравнением называется уравнение вида ax2+bx+c=0, где x - переменная, a, b и c - некоторые числа, причём

a

0

.

Числа a, b и c — коэффициенты квадратного уравнения. Число a называют первым коэффициентом, число b — вторым коэффициентом и число c — свободным членом.

В каждом из уравнений вида ax2+bx+c=0, где

a

0

, наибольшая степень переменной x — квадрат. Отсюда и название: квадратное уравнение.

Заметим, что квадратное уравнение называют ещё уравнением второй степени, так как его левая часть есть многочлен второй степени.

Квадратное уравнение, в котором коэффициент при x2 равен 1, называют приведённым квадратным уравнением. Например, приведёнными квадратными уравнениями являются уравнения

x

2

11

x

+

30

=

0

,

x

2

6

x

=

0

,

x

2

8

=

0

Если в квадратном уравнении ax2+bx+c=0 хотя бы один из коэффициентов b или c равен нулю, то такое уравнение называют неполным квадратным уравнением. Так, уравнения -2x2+7=0, 3x2-10x=0, -4x2=0 - неполные квадратные уравнения. В первом из них b=0, во втором c=0, в третьем b=0 и c=0.

Неполные квадратные уравнения бывают трёх видов:

1) ax2+c=0, где

c

0

;

2) ax2+bx=0, где

b

0

;

3) ax2=0.

Рассмотрим решение уравнений каждого из этих видов.

Для решения неполного квадратного уравнения вида ax2+c=0 при

c

0

переносят его свободный член в правую часть и делят обе части уравнения на a:

x

2

=

c

a

x

1

,

2

=

±

c

a

Так как

c

0

, то

c

a

0

Если

c

a

>

0

, то уравнение имеет два корня.

Если

c

a

<

0

, то уравнение не имеет корней (квадратный корень из отрицательного числа извлекать нельзя).

Для решения неполного квадратного уравнения вида ax2+bx=0 при

b

0

раскладывают его левую часть на множители и получают уравнение

x

(

a

x

+

b

)

=

0

{

x

=

0

a

x

+

b

=

0

{

x

=

0

x

=

b

a

Значит, неполное квадратное уравнение вида ax2+bx=0 при

b

0

всегда имеет два корня.

Неполное квадратное уравнение вида ax2=0 равносильно уравнению x2=0 и поэтому имеет единственный корень 0.

Формула корней квадратного уравнения

Рассмотрим теперь, как решают квадратные уравнения, в которых оба коэффициента при неизвестных и свободный член отличны от нуля.

Решим квадратне уравнение в общем виде и в результате получим формулу корней. Затем эту формулу можно будет применять при решении любого квадратного уравнения.

Решим квадратное уравнение ax2+bx+c=0

Разделив обе его части на a, получим равносильное ему приведённое квадратное уравнение

x

2

+

b

a

x

+

c

a

=

0

Преобразуем это уравнение, выделив квадрат двучлена:

x

2

+

2

x

b

2

a

+

(

b

2

a

)

2

(

b

2

a

)

2

+

c

a

=

0

x

2

+

2

x

b

2

a

+

(

b

2

a

)

2

=

(

b

2

a

)

2

c

a

(

x

+

b

2

a

)

2

=

b

2

4

a

2

c

a

(

x

+

b

2

a

)

2

=

b

2

4

a

c

4

a

2

x

+

b

2

a

=

±

b

2

4

a

c

4

a

2

x

=

b

2

a

+

±

b

2

4

a

c

2

a

x

=

b

±

b

2

4

a

c

2

a

Подкоренное выражение называют дискриминантом квадратного уравнения ax2+bx+c=0 («дискриминант» по латыни — различитель). Его обозначают буквой D, т.е.

D

=

b

2

4

a

c

Теперь, используя обозначение дискриминанта, перепишем формулу для корней квадратного уравнения:

x

1

,

2

=

b

±

D

2

a

, где

D

=

b

2

4

a

c

Очевидно, что:

1) Если D>0, то квадратное уравнение имеет два корня.

2) Если D=0, то квадратное уравнение имеет один корень

x

=

b

2

a

.

3) Если D<0, то квадратное уравнение не имеет корней, т.к. извлекать корень из отрицательного числа нельзя.

Таким образом, в зависимости от значения дискриминанта квадратное уравнение может иметь два корня (при D > 0), один корень (при D = 0) или не иметь корней (при D < 0).

При решении квадратного уравнения по данной формуле целесообразно поступать следующим образом:

1) вычислить дискриминант и сравнить его с нулём;

2) если дискриминант положителен или равен нулю, то воспользоваться формулой корней, если дискриминант отрицателен, то записать, что корней нет.

Теорема Виета

Приведённое квадратное уравнение ax2-7x+10=0 имеет корни 2 и 5. Сумма корней равна 7, а произведение равно 10. Мы видим, что сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. Таким свойством обладает любое приведённое квадратное уравнение, имеющее корни.

Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Т.е. теорема Виета утверждает, что корни x1 и x2 приведённого квадратного уравнения x2+px+q=0 обладают свойством:

{

x

1

+

x

2

=

p

x

1

x

2

=

q

надеюсь правильно

benonika
1. Пусть время, за которое скорый поезд догонит пассажирский, - х ч. Пассажирский поезд в пути находится (х+2) ч, т.к. выехал на 2 часа раньше.
tск=х ч
tпас=(x+2) ч
2. Нам даны скорости поездов, поэтому можем найти S по формуле: S=V*t
Sск=66x км
Sпас=55(x+2) км
3. Поезда проходят равное расстояние, поэтому справедливо уравнение:
66x=55(x+2)
66x=55x+110
66x-55x=110
11x=110
x=10
Через 10 ч скорый поезд догонит пассажирский.
Нашли время, значит можем найти расстояние, которое проедет скоростной поезд за 10 ч:
Sск=66*10=660 (км)
Для того чтобы найти на каком расстоянии поезда встретились необходимо:
S=Sобщ-Sск=855-660=195 (км)

2. Найдем путь, который скорый поезд за 2 ч:
80*2=160 (км) 
Найдем путь, на котором поезда двигались одновременно:
720-160=560 (км)
Скорость сближения поездов: 80+60=140 (км/ч)
Время до встречи: 560/140=4 (ч)

3. Найдем время за которое самолеты вместе пролетели все расстояние:
11-8=3 (ч)
1. Мы знаем V1 и t1. Находим S1=620*3=1860 (км)
2. S2=3540-1860=1680
3. Теперь знаем S2 и t2. Находим V2=1680/3=560 (км/ч)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Знайдіть точку максимуму функції f(x)= −12 + /3
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

TrubnikovKlimenok926
Кулагина_Владимир1179
oliayur4encko
Радецкая264
Ter-Pogosov_Vasilevna
Олег1105
eliteclassic308
asker45967
Владимирович111
Faed_Arakcheeva
Marina281
baton197310
kav511
Станиславович1830
Решить систему y=x+1 y=6 делить на x
info2