lele4kass
?>

Представь выражение z42 в виде произведения двух степеней с одинаковыми основаниями. Выбери возможные варианты: z⋅z41 z41⋅z0 z42⋅z0 z21⋅z2 z37⋅z5

Алгебра

Ответы

derkachn6429

первый, третий, пятый

Объяснение:

при перемножении двух степеней с одинаковыми основаниями, показатели степени складываются

kep92

1. -2;

2. 3.

Объяснение:

1.Sn=6n-n^2

a1 = S1 = 6•1 - 1^2 = 5;

a1+a2 = S2 = 6•2 - 2^2 = 12 - 4 = 8;

a2 = S2 - S1 = 8 - 5 = 3.

Найдём d:

d = a2 - a3 = 3 - 5 = -2.

2. Sn=6n-n^2

Рассмотрим квадратичную функцию

у = 6х - х^2.

Графиком функции является парабола

у = - х^2 + 6х

Ветви параболы направлены вниз, своего наибольшего значения функция достигает в вершине параболы. Найдём её координаты:

х вершины = -b/(2a) = -6/(-2) = 3.

y вершины = - 3^2 +6•3 = -9+18 = 9.

Наибольшего значения 9 функция у = - х^2 + 6х достигает при х = 3.

Так как 3 - натуральное число, то и наша функция Sn=6n-n^2, определённая только для натуральных n, достигает наибольшего значения 9 при n = 3.

Необходимо взять три первых члена прогрессии, чтобы их сумма была наибольшей и равной 9.

ответить на второй вопрос можно и по-прежнему другому:

Sn=6n-n^2

- n^2 + 6n = - (n^2 - 6n) = - (n^2 -2•n•3 + 9 - 9) = - ((n-3)^2 -9) = - (n-3)^2 + 9.

Так как слагаемое 9 постоянно, a - (n-3)^2 неположительно для любого n, то наибольшей сумма будет тогда, когда наибольшим будет первое слагаемое, т.е. когда - (n-3)^2 = 0, при n = 3.

В этом случае Sn = - (n-3)^2 + 9 = 0 + 9 = 9.

eduard495
Интересная логическая задача.
Известно: 1,4,5 - кедр, 2,3 - сандал. На шкатулках из кедра и сандала одинаковое количество ложных утверждений: 1 или 2.
Надписи:
На 1: 1 или 4. На 2: 1. На 3: 3 или 5.
На 4: НЕ в 1, НЕ во 2 и НЕ в 3.
На 5: На всех остальных ложь.
На 5 написано, что на остальных ложь, поэтому на всех правды быть не может.
1) По 1 ложному утверждению. Тогда ложь на 5 шкатулке из кедра. На 1 и 4 правда.
Если ложь на 2 шкатулке из сандала, то на 3 правда, но 1 и 3 противоречат друг другу.
Если ложь на 3 шкатулке, то на 2 правда, но тогда 2 и 4 противоречат друг другу.
Таким образом, по 1 ложному высказыванию быть не может.
2) По 2 ложных утверждения. Очевидно, что это 1,2,3,4 шкатулки, а на 5 правда. В этом случае есть единственное решение: клад во 2 шкатулке.
1) Не в 1 и не в 4. 2) Не в 1.
3) Не в 3 и не в 5.
4) В одной из шкатулок левее 4 клад есть
ответ: клад во 2 шкатулке.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Представь выражение z42 в виде произведения двух степеней с одинаковыми основаниями. Выбери возможные варианты: z⋅z41 z41⋅z0 z42⋅z0 z21⋅z2 z37⋅z5
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

strannaya2018
ashkiperova6
lukur2005
koam20167459
buhtovarish
cholga69
sergei-pletenev
treneva359
Сергей
Александр Сергей
AleksandraRuslan504
Darya Aleksei1173
magazin-71
Ушакова1902
NataliaBerezovskaya33