Найдем производную, приравняем к нулю, найдем корни.
Определим знаки производной на промежутках. Если "+", функция возрастает, "-" - убывает.
См. рис.
Функция возрастает при х ∈ [-∞; -0,7]∪[8,7; +∞]
или
Функция убывает при х ∈ [-0,7; 8,7]
или
2. Найдите стационарные точки:
Точки области определения функции, при которых производная функции равна нулю, называются стационарными точками.
3. Найдите локальные максимумы и минимумы функции.
Найдем производную, приравняем к нулю, найдем корни.
Определим знаки производной на промежутках. Если производная меняет знак с "+" на "-", то будет точка максимума. Если производная меняет знак с "-" на "+" - точка минимума.
См. рис.
ilyxa08
30.04.2022
1)y=lnx-4,4x^2 y!=1/x-4.5*2*x=1/x-9x 1/x-9x=0 1-9x^2=0 x^2=1/9 x=+-1/3 x1=-1/3 x2=+1/3 x3=0 критические точки исследуем у! на интервалах -[-1/3 .0] [0 .1/3] y!(-1)=-1+9=8>0 y!(-1/4)=-4+9/4<0 y!(1/4)4-9/4>0 =>у на интер. (-1.3 ,0 ) убывает, на (0 1.3) возрастает , 3)lnx=ln(2x^2-5)-ln(x+4) lnx=ln(2x^2-5)/(x+4) x=(2x^2-5)/(x+4) 2x^2-5-x^2-4x=0 x^2-4x-5=0 d=16+20=36 vd=6 x1=4-6/2=-1 x2=4+6/2=5 одз x>0 2x^2-5>0 x+4>0 =>x>v5/2 >1 ответ х2=5 х1=-1 не уд .одз
Объяснение:
1. Найдите промежутки возрастания и убывания:
Найдем производную, приравняем к нулю, найдем корни.
Определим знаки производной на промежутках. Если "+", функция возрастает, "-" - убывает.
См. рис.
Функция возрастает при х ∈ [-∞; -0,7]∪[8,7; +∞]
или
Функция убывает при х ∈ [-0,7; 8,7]
или
2. Найдите стационарные точки:
Точки области определения функции, при которых производная функции равна нулю, называются стационарными точками.
3. Найдите локальные максимумы и минимумы функции.
Найдем производную, приравняем к нулю, найдем корни.
Определим знаки производной на промежутках. Если производная меняет знак с "+" на "-", то будет точка максимума. Если производная меняет знак с "-" на "+" - точка минимума.
См. рис.