Буянто1346
?>

АЛГЕБРА 8 КЛАС, ІВ СКЛАДІТЬ ГРАФІК ФУНКЦІЇ: у=х^2-25/х+5

Алгебра

Ответы

d111180

y=x^2-25/x+5=y=0^2-25/0+5=y=-5

Объяснение:

Желаю удачи в учобе

Avdimov5
1)
База индукции: 1

a_1=a_1+d*0=a_1 проверено.

Предположим, что утверждение верно для n=k.
a_{k}=a_1+d(k-1)=a_1+dk-d
Покажем, и докажем, что утверждение верно так же для n=k+1.
a_{k+1}=a_1+d[(k+1)-1]=a_1+dk
Так как , следуя предположению a_{k}=a_1+d(k-1)=a_1+dk-d то прибавив к данному выражению d. Мы получим  следующий член a_{k+1}=a_1+d[(k+1)-1]=a_1+dk.
Т.е. предположение верно. Ч.Т.Д.

2)
S_n= \frac{n[2a_1+d(n-1)]}{2}
База : 1
Проверка: S_1= \frac{2a_1}{2}=a_1

Предположение: n=k \Rightarrow S_k= \frac{k[2a_1+d(k-1)]}{2}= \frac{2a_1k+dk^2-dk}{2}

Теперь покажем и докажем, что данное выражение верно и при n=k+1:

Так как предыдущий член был равен k, то что бы узнать сумму первых k+1 членов, достаточно прибавить  k+1 член (используя формулу которую мы доказали ранее):
S_{k+1}= \frac{2a_1k+dk^2-dk}{2}+(a_1+dk)= \frac{2(a_1+dk)+2a_1k+dk^2-dk}{2}\\= \frac{2a_1+2dk+2a_1k+dk^2-dk}{2}= \frac{2a_1k+2a_1+dk^2+dk}{2}\\
= \frac{2a_1(k+1)+dk(k+1)}{2}= \frac{(k+1)(2a_1+dk)}{2}
т.е. мы пришли к изначальной формуле, если туда подставить k+1. Ч.Т.Д.

3)
Это не формула общего члена, это формула суммы.
При 
q=1 получается деление на ноль, поэтому сразу пишем q \neq 1
База: 1
b_1= \frac{b_1(1-q)}{(1-q)}=b_1
Предположим, что формула верна для: n=k
Покажем и докажем что формула верна для n=k+1:
Как и с суммой арифм.прогрессии. Мы добавим k+1 член к сумме.
b_{k+1}= \frac{b_1(1-q^k)}{1-q}+b_1q^k= \frac{(1-q)b_1q^k+b_1(1-q^k)}{1-q}\\= \frac{b_1[(1-q)q^k+(1-q^k)]}{1-q}= \frac{b_1[q^k-q^{k+1}+1-q^k]}{1-q}= \frac{b_1(1-q^{k+1})}{1-q}
Ч.Т.Д.
sedalex
Это особый вид уравнений, по парно суммы чисел в скобках равны, т.е. (-2)+4=(-3)+5. Этим и воспользуемся: 
сгруппируем эти скобки ((х-2)*(х+4))*((х-3)(х+5))=1320
и раскроем пары скобок: (х**2+2х-8)*(х**2+2х-15)=1320
(** - степень)
Заметь, что и в той, и в другой скобке есть х**2+2х
Так что можно сделать замену х**2+2х=а
Тогда уравнение принимает вид (а-8)(а-15)=1320
Далее раскрой скобки, получится квадратное уравнение, реши его. Получив а, верни замену. т.е. х**2+2х=а1 и х**2+2х=а2 (а1 и а2 - корни уровнения (а-8)(а-15)=1320) затем найди х

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

АЛГЕБРА 8 КЛАС, ІВ СКЛАДІТЬ ГРАФІК ФУНКЦІЇ: у=х^2-25/х+5
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

topsalon
ortopediya
vikabobkova2010
Azarenkoff
Monstr13
astahova
Владислав893
(7c−11d)⋅(7c+11d)−49c2, если c=2 и
tsypanttn21
Milovidova
Tarapovskaya
turoverova5
s-food
козлов
scorpion21c
fakelel