1) Пусть t=sinx, где t€[-1;1], тогда 2t^2+t-1=0 t1=(-1-3)/4=-1 t2=(-1+3)/4=1/2 Вернёмся к замене sinx=-1 x=-Π/2+2Πn, n€Z sinx=1/2 x1=Π/6+2Πm, m€Z x2=5Π/6+2Πm, m€Z ответ: -Π/2+2Πn, n€Z; Π/6+2Πm, 5Π/6+2Πm, m€Z 2) 6cos^2x+cosx-1=0 Пусть t=cosx, где t€[-1;1], тогда 6t^2+t-1=0 t1=(-1-5)/12=-1/2 t2=(-1+5)/12=1/3 Вернёмся к замене: cosx=-1/2 x=+-arccos(-1/2)+2Πn, n€Z cosx=1/3 x=+-arccos(1/3)+2Πm, m€Z ответ: +-arccos(-1/2)+2Πn, n€Z; +-arccos(1/3)+2Πm, m€Z 3) 2cos^2x+sinx+1=0 2(1-sin^2x)+sinx+1=0 -2sin^2x+sinx+3=0 Пусть t=sinx, где t€[-1;1], тогда -2t^2+t+3=0 t1=(-1-5)/-4=-1,5 посторонний, т.к. t€[-1;1] t2=(-1+5)/-4=-1 Вернёмся к замене sinx=-1 x=Π/2+2Πn, n€Z ответ: Π/2+2Πn, n€Z
pisikak999
22.01.2023
По определению среднее арифметическое равно общей сумме членов деленное на их общее количество: откуда сумма n первых членов арифметической последовательности равна в частности отсюда второй член последовательности равен разность арифметической прогрессии равна значит искомая арифметическая прогрессия это арифметическая прогрессия с первым членов 2, и разностью арифметической прогрессии 4 (2, 6, 10, 14, 18, .....) ---------- /////////// маленькая проверочка схождения с формулой суммы членов прогрессии ////////// ответ: арифмитичесская прогрессия с первым членом 2 и разностью прогрессии 4
5,3 будет правильный ответ