Первую ещё не придумала, а вот вторая:
Чтобы найти вероятность того, что точка,брошенная в круг, попадёт в треугольник, надо найти отношение площади правильного треугольника к площади окружности
S(треуг)=(а:2*корень(3))/ S 4
S(окруж)=Pі *r^2
Мы знаем связь между стороной правильного треугольника и радиусом описаной окружности:
r=a/корень3
Тогда, вероятность = S(треуг)/ S(окруж)= ((а:2*корень(3))/ S 4) / (Pі *r^2) = ((а:2*корень(3))/ S 4) * (Pі *а^2) /3=(3*корень3)/ 4Pі
Если надо, можно примерно вищитать:
(3*корень3)/ 4Pі = 3*1,73/4*3,14=5,19/12,56=0,41
ответ:0,41
Поделитесь своими знаниями, ответьте на вопрос:
очень надо Линейное уравнение очень надо Линейное уравнение ">
a1 + a2 + a3 + a4 = a
a1 + n = a2 - n
a1 + n = a3*n
a1 + n = a4/n
Выразим все части через а1
a2 = a1 + 2n
a3 = a1/n + 1
a4 = a1*n + n^2
Подставим в сумму
a1 + a1 + 2n + a1/n + 1 + a1*n + n^2 = a
Умножим все на n
2a1*n + 2n^2 + a1 + n + a1*n^2 + n^3 = a*n
Выделяем а1
a1*(2n + 1 + n^2) = a*n - n^3 - 2n^2 - n
Выделяем полные квадраты
a1*(n + 1)^2 = a*n - n(n + 1)^2
Делим
a1 = a*n/(n+1)^2 - n
Остальные части получаем подстановкой.
a2 = a1 + 2n = a*n/(n+1)^2 + n
a3 = a1/n + 1 = a/(n+1)^2 - 1 + 1 = a/(n+1)^2
a4 = a1*n + n^2 = a*n^2/(n+1)^2 - n^2 + n^2 = a*n^2/(n+1)^2
Для a = 90, n = 2 получаем
a1 = 90*2/3^2 - 2 = 90*2/9 - 2 = 10*2 - 2 = 18
a2 = a1 + 2n = 18 + 4 = 22
a3 = a1/n + 1 = 18/2 + 1 = 9 + 1 = 10
a4 = a1*n + n^2 = 18*2 + 4 = 36 + 4 = 40
ответ: 18, 22, 10, 40