В решении.
Объяснение:
Представьте в виде многочлена выражение:
(0,8a + 0,9b)(0,8a - 0,9b) = 0,64a² - 0,81b².
Представьте в виде многочлена выражение:
(8x⁴+9y)(8x⁴−9y) = 64х⁸ - 81у².
Разложите на множители:
0,01m⁶−2,56n⁶ = (0,1m³ - 1,6n³)(0,1m³ + 1,6n³).
Разложите на два множителя:
36x²−1,21y² = (6х - 1,1у)(6х + 1,1у).
Представьте в виде многочлена выражение:
(0,4a+3b)(0,4a−3b) = 0,16a² - 9b².
Выполните умножение многочленов:
(2a²+0,1)(2a²−0,1) = 4a⁴ - 0,01.
Разложите на два множителя:
49m²−289n² = (7m - 17n)(7m + 17n).
Разложите на множители:
a⁴−0,16b⁴ = (a² - 0,4b²)(a² + 0,4b²).
Выполните умножение многочленов:
(0,3x+6)(0,3x−6) = 0,09x² - 36.
Разложите на множители:
0,49m⁶−225n⁶ = (0,7m³ - 15n³)(0,7m³ + 15n³).
Разложите на два множителя:
0,09x²−1,96y² = (0,3x - 1,4y)(0,3x + 1,4y).
Представьте в виде многочлена выражение:
(7x⁴+0,8y³)(7x⁴−0,8y³) = 49x⁸ - 0,64y⁶.
Выполните возведение в квадрат:
(1,6+0,5a)² = 2,56 + 1,6a + 0,25a².
Ясно, что сторона большого квадрата равна √49=7/см/, и если рассмотреть верхний левый треугольник, в котором гипотенуза АВ равна 5см, введя переменную х- пусть это будет меньший катет, тода больший катет равен (7-х),по теореме Пифагора
х²+(7-х)²=25; х²+х²-14х+49=25; 2х²-14х+24=0; х²-7х+12=0; По Виета х=3 или х=4, т.е. если один катет 3см, то второй 4см, и наоборот.
А это и есть стороны тех четырех прямоугольников, зная площадь одного, найдя площадь четырех и от площади квадрата отняв полученную площадь, найдем площадь маленького квадрата
Она равна 49-4*4*3=49-48=1/см²/
ответ 1см² , у Вас это ответ первый.
Поделитесь своими знаниями, ответьте на вопрос:
Решите систему неравенств 4 х - 16 > 0 7-3 x > -2
ответ: система не имеет решений.
Объяснение: