Alisa
?>

Упростить выражение: (1 - cos t)(1 + cos t) = ?

Алгебра

Ответы

Кирилл-Анна1023

1)(х-3)^2+5х-х^3+х(х-7)-12х^2+х^2(х-1)=х^2-6х+9+5х-х^3+х^2-7х-12х^2+х^3-х^2= -11х^2-8х-9

Значит сумма коэффициентов будет равна:

-11-8+9= -10

Объяснение:

Здесь нужно использовать следующие формулы :

Формула 1

(х+у) ^2=х^2+2ху+у^2

( Это нужно для части (х-3)^2 =х^2-6х+9)

Формула 2

а(b+c)=ab+ac

(Это нужно для частей х(х-7) ; х^2(х-1))

Ну, вроде непонятные моменты объяснила, можно только о коэффициентах пару слов сказать :

Коэффицие́нт — термин, обозначающий числовой множитель при буквенном выражении, множитель при той или иной степени неизвестного, или постоянный множитель при переменной величине.

Теперь точно все. Удачки

dinadumno2114
Это     знаменитое неравенство Бернули.
Как  вариант оно  доказывается методом мат   индукции.(для  натуральных n)
1)Для  n=1
1+b>=1+b (верно тк   наблюдается равенство)
2)Положим   верность утверждения для n=k
(1+b)^k>=1+kb
3) Докажем его справедливость   для n=k+1
(1+b)^k+1>=1+b(k+1).
ИМеем
(1+b)^k>=1+kb
тк   b>=-1  то  1+b>=0 что   позволяет   умножать обе части неравенства  на  1+b без страха изменения знака неравенства.
(1+b)^k+1>=(1+bk)(1+b)=1+b+bk+b^2*k=1+b(k+1)+b^2*k 
тк b^2*k>=0 то    1+b(k+1)<=  1+b(k+1)+b^2*k  то   раз справедиво неравенство
(1+b)^k+1>=1+b(k+1)+b^2*k
ТО и верно  неравенство:
(1+b)^k+1>=1+b(k+1)
.    ТО   в силу принципа математической индукции   неравенство является верным.  
Чтд.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Упростить выражение: (1 - cos t)(1 + cos t) = ?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

vladai2
ilds88
Ямпольский
nestruev
cutur3414
dakimov
snab54
aci2003
shoora
Konstantinovna1936
tretyakovamarina201155
anton1969026203
volna22051964
Vladimirovna1370
Витальевна