Look7moscow
?>

Экспериментально получены пять значений искомой функции y=f(x) при пяти значениях аргумента x: 1, 2, 3, 4, 5. Методом наименьших квадратов найти функцию y=f(x) в виде y= ax + h. Сделать чертеж.

Алгебра

Ответы

ivstigres65

Искомая функция f(x)= ax + h.

Найдем значения искомой функции в заданных точках х:

f(1)=a\cdot1+h=a+h

f(2)=a\cdot2+h=2a+h

f(3)=a\cdot3+h=3a+h

f(4)=a\cdot4+h=4a+h

f(5)=a\cdot5+h=5a+h

Кроме этого, для каждого из аргументов есть еще и экспериментальное значение, которое обозначим через функцию g(x):

g(1)=0.1;\ g(2)=0.8;\ g(3)=0.7;\ g(4)=2.8;\ g(5)=1.6

Составим функцию z(a;\ h), которая будет суммировать квадраты разностей значений функций f(x) и g(x) соответствующих аргументов:

z(a;\ h)=(a+h-0.1)^2+(2a+h-0.8)^2+(3a+h-0.7)^2+\\+(4a+h-2.8)^2+(5a+h-1.6)^2

Исследуем эту функцию на экстремум.

Найдем частные производные:

z'_a=2(a+h-0.1)+2(2a+h-0.8)\cdot2+2(3a+h-0.7)\cdot3+\\+2(4a+h-2.8)\cdot4+2(5a+h-1.6)\cdot5

z'_a=2a+2h-0.2+8a+4h-3.2+18a+6h-4.2+\\+32a+8h-22.4+50a+10h-16

z'_a=110a+30h-46

z'_h=2(a+h-0.1)+2(2a+h-0.8)+2(3a+h-0.7)+\\+2(4a+h-2.8)+2(5a+h-1.6)

z'_h=2a+2h-0.2+4a+2h-1.6+6a+2h-1.4+\\+8a+2h-5.6+10a+2h-3.2

z'_h=30a+10h-12

Необходимое условие экстремума: равенство нулю частных производных:

\begin{cases} 110a+30h-46=0\\ 30a+10h-12=0\end{cases}

Домножим второе уравнение на (-3):

\begin{cases} 110a+30h-46=0\\ -90a-30h+36=0\end{cases}

Складываем уравнения:

20a-10=0

a=0.5

Подставим значение а во второе уравнение исходной системы:

30\cdot0.5 +10h-12=0

15+10h-12=0

10h=-3

h=-0.3

Точка (0.5; -0.3) - предполагаемая точка экстремума.

Найдем вторые частные производные функции:

z''_{aa}=(110a+30h-46)'_a=110

z''_{ah}=(110a+30h-46)'_h=30

z''_{hh}=(30a+10h-12)'_h=10

Рассмотрим выражение:

\Delta=z''_{aa}z''_{hh}-(z''_{ah})^2=110\cdot10-30^2=200

Так как \Delta0 и z''_{aa}0, то точка (0.5; -0.3) является точкой минимума.

Значит, в точке (0.5; -0.3) функция z(a;\ h) имеет минимум.

Тогда, значения a=0.5 и h=-0.3 есть искомые коэффициенты функции f(x).

f(x)= 0.5x -0.3

ответ: f(x)= 0.5x -0.3


Экспериментально получены пять значений искомой функции y=f(x) при пяти значениях аргумента x: 1, 2,
Viktor1316
Если нарисуете свое условие на листочке, увидите, что имеем треугольник, образованный двумя сторонами параллелограмма и его меньшей диагональю. Стороны треугольника 25, 24, и 7 см. Найдем его площадь через периметр: S = sqrt(p·(p – a)·(p – b)·(p – c)) (формула Герона) ,

где sqrt (...) — обозначение квадратного корня, p = (a + b + c)/2 — полупериметр треугольника
т. е. S=sqrt(28(28-25)(28-24)(28-7)) почитаете сами, получите какое-то Х.
теперь высота этого треугольника, опущенная на сторону 25 см будет по совместительству высотой параллелограмма, обозначу ее У. получим уравнение: 1/2У*25=Х.
Y равен примерно 6,4
Измайлова-Алексей
Пусть три числа, образующий геометрическую прогрессию, равны соответственно b, bq, bq^2, причем q > 1, т.к. последовательность возрастающая. Тогда b + bq + bq^2 = b(1+q+q^2)=56. Вычтем 1, 7, 21 из членов прогрессии. Получим b-1, bq-7, bq^2-21. Т.к. получилась арифметическая прогрессия, то выполняется условие: (b-1)+(bq^2-21)=2(bq-7)
b(q^2-2q+1)=8.
Разделим одно равенство на другое:
(b(q^2+q+1))/(b(q^2-2q+1))=56/8=7
q^2+q+1=7q^2-14q+7
6q^2-15q+6=0
2q^2-5q+2=0
Далее решаем это квадратное уравнение.
D=(-5)^2-4*2*2=9
q=(5+-3)/(2*2)
q1=2, q2=1/2.
q2 не подходит, т.к. оно меньше 1.
Значит, q=2. Найдем b:
b = 8/(q^2-2q+1)=8/(q-1)^2=8/1=8
Члены геометрической прогрессии: 8,16,32
Члены арифметической прогрессии: 7,9,11. Значит, посчитано правильно.
Теперь найдем сумму первых 10 членов геометрической прогрессии:
S=b*(q^10-1)/(q-1)=8*(2^10-1)/(2-1)=8184

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Экспериментально получены пять значений искомой функции y=f(x) при пяти значениях аргумента x: 1, 2, 3, 4, 5. Методом наименьших квадратов найти функцию y=f(x) в виде y= ax + h. Сделать чертеж.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

ilez03857
AHO436
Donat-Evgeniya793
Vik1744184
Avshirokova51
baxirchik
agrilandrussia
Stasyadoma
BekturMagometovich189
buleckovd8724
aamer9992680
natanikulina1735
Elizavetaborisovna1992
Merkuloff78
abramovae