A_n=6+8(n-1)=b_k=2+3(k-1); 8n-3k=1. Подбираем частное решение n=2; k=5 (лень делать "по науке", если решение элементарно угадывается); a_2=b_5=14. Перепишем уравнение в виде 8(n-2)-3(k-5)=0⇒n - 2 делится на 3, то есть n - 2=3m⇒8·3m=3(k-5)⇒k - 5=8m. Поэтому общее решение нашего уравнение имеет вид n=2+3m; k=5+8m - члены наших прогрессий с такими номерами совпадают. Находим все такие k: 1≤k ≤40 k=5; 13;21;29;37 (при этом m=0; 1; 2; 3; 4); n=2; 5; 8; 11; 14 b_5=a_2=14; b_13=a_5=38 (на 24 больше); b_21=a_8=62 (еще на 24 больше); b_29=a_11=86; b_37=a_14=110
Gainalii1912
06.04.2022
Решение: Обозначим объём воды в бассейне за 1(единицу), а наполнение водой бассейна в час первой трубой за (х), а второй трубой за час (у), тогда наполнение бассейна водой обеими трубами наполняется за: 1/ ((х+у)=6 (часов) Если наполнить бассейн первой трубой, бассейн наполнится за: 1/х=10 (часов) Решим эту систему уравнений: 1/(х+у)=6 1/х=10
1=6*(х+у) 1=10*х 1=6х+6у 1=10х Из второго уравнения найдём значение (х) х=1:10 х=0,1 Подставим значение (х) в уравнение: 1=6х+6у 1=6*0,1+6у 6у=1-0,6 6у=0,4 у=0,4 :6 у=4/10 : 6=4/10*6=4/60=2/15 И так как заполнение бассейна второй трубой в час равно у=2/15, то вторая труба заполнит бассейн за : 1 : 2/15=15/2=7,5 (часа)
ответ: Бассейн заполнится второй трубой за 7,5 часов
2.
ответ под буквой Е) 1.
3.
ответ под буквой A)
4.
ответ под буквой A)