tatarinova-51
?>

число 484 представьте в виде произведения двух положительных чисел так, чтобы значение их суммы было наибольшим. Нужно полное решение

Алгебра

Ответы

aggeeva

наименьшее произведение будт 4*5

saa002
Вектор, перпендикулярный плоскости 2x + 3y - 4z + 2 = 0 имеет координаты (2; 3; -4).
Он обязательно будет лежать в плоскости, перпендикулярной данной, уравнение которой нам нужно составить.
Отложим этот вектор, например, от точки A (-3; 2; 1), т. е. проведём вектор АС, который лежит в искомой плоскости.
Получим точку С (-1; 5; -3), которая тоже лежит в искомой плоскости.
Зная координаты трёх точек A (-3; 2; 1), В (4; -1; 2) и С (-1; 5; -3), лежащих в одной плоскости, найдём уравнение этой плоскости.
Для этого составляем определитель:
| x-(-3)  4-(-3)  -1-(-3) |
| y-2      -1-2    5-2      | = 0
| z-1      2-1     -3-1     |

| x+3  7   2  |
| y-2   -3  3  | = 0
| z-1   1   -4 |

Раскрываем определитель по первому столбцу:
(x+3) × |-3   3| - (y-2) × |7    2| + (z-1) × |7    2| = 0
             |1   -4|               |1  -4|                 |-3  3|
(x+3) × (-3×(-4)-1×3) - (y-2) × (7×(-4)-1×2) + (z-1) × (7×3-(-3)×2) = 0
(x+3) × (12-3) - (y-2) × (-28-2) + (z-1) × (21-(-6) = 0
(x+3) × 9 - (y-2) × (-30) + (z-1) × 27 = 0
9(x+3) +30(y-2) + 27(z-1) = 0
3(x+3) +10(y-2) + 9(z-1) = 0
3x + 9 + 10y - 20 + 9z - 9 = 0
3x + 10y + 9z - 20 = 0 -- искомое уравнение плоскости
Olesyamilenina8
Бино́м Нью́то́на — формула для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных, имеющая вид

(
a
+
b
)
n
=

k
=
0
n
(
n
k
)
a
n

k
b
k
=
(
n
0
)
a
n
+
(
n
1
)
a
n

1
b
+

+
(
n
k
)
a
n

k
b
k
+

+
(
n
n
)
b
n
(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n - k} b^k = {n\choose 0}a^n + {n\choose 1}a^{n - 1}b + \dots + {n\choose k}a^{n - k}b^k + \dots + {n\choose n}b^n
где
(
n
k
)
=
n
!
k
!
(
n

k
)
!
=
C
n
k
{n\choose k}=\frac{n!}{k!(n - k)!}= C_n^k — биномиальные коэффициенты,
n
n — неотрицательное целое число.

В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

число 484 представьте в виде произведения двух положительных чисел так, чтобы значение их суммы было наибольшим. Нужно полное решение
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

fialkaflowers77
kirill81
denisdenisov63
forwandy42
seleznev1980
aivia29
secretary
Tatianarogozina1306
JisesLove19955
jim2k
fedotochkin8
polyakovaelena
vikola2008
mashiga2632
kuchin