a) (x+2)+(x - 2)= x+2+x - 2=2х - раскрыли скобки, т.е. просто опустили и привели подобные.
б) (2x - 3y)*(2x +34)=4х²+68х-6ху-102у
в) (b² +4)*(4-b²)=(4+b² )*(4-b²)=4²-(b²)²=16-b⁴- при возведении степени в степень мы перемножаем показатели. как здесь 2*2=4.
г) (y+3)*(y-3)=у²-9
д) (3a-3y)*(2x+3y)=6ах+9ау-6ху-9у²
е) (b²+4)*(4-b²)=) (4+b²)*(4-b²)=16-b⁴
в номерах в), г), е) использовали формулу разности квадратов. т.е.
(а-с)*(а+с)=а²-с², в остальных б) , д), просто раскрывали скобки по распределительному закону, т.е. умножали все члены первой скобки на все члены второй
Пусть собственная скорость катера х км/ч, тогда скорость катера по течению реки равна (х + 3) км/ч, а скорость катера против течения реки равна (х - 3) км/ч. Катер по течению реки 25 километров за 25/(х + 3) часа, и 3 километра против течения реки за 3/(х - 3) часа. По условию задачи известно, что на весь путь катер затратил (25/(х + 3) + 3/(х - 3)) часа или 2 часа. Составим уравнение и решим его.
25/(х + 3) + 3/(х - 3) = 2;
О. Д. З. х ≠ ±3;
25(х - 3) + 3(х + 3) = 2(х² - 9);
25х - 74 + 3х + 9 = 2х² - 18;
28х - 66 = 2х² - 18;
2х² - 28х - 18 + 66 = 0;
2х² - 28х + 48 = 0;
х² - 14х + 24 = 0;
D = b² - 4ac;
D = (-14)² - 4 * 1 * 24 = 196 - 96 = 100; √D = 10;
x = (-b ± √D)/(2a);
x1 = (14 + 10)/2 = 12 (км/ч);
х2 = (14 - 10)/2 = 4/2 = 2 (км/ч) - скорость катера не может быть меньше скорости течения реки, т.к. катер не сможет плыть против течения.
ответ. 12 км/ч.
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Из 12 дней каникул лена была неделю у бабушки. какую часть каникул лена была у бабушки?
всего 12 дней каникул отдыхала лена
у бабушки отдыхала неделю,значит 7 дней
7/12 часть каникул отдыхала лена у бабушки