Область допустимых значений (ОДЗ): x >= -4. x - 4*V(x + 4) - 1 < 0 ( V - корень квадратный). x - 1 < 4*V(x + 4) Правая часть неравенства <= 0 для всех х из ОДЗ, левая часть < 0 при x < 1, то есть неравенство выполняется при x < 1, с учетом ОДЗ получаем -4 <= х < 1. Пусть x >= 1. Возведем обе части неравенства в квадрат (x - 1)^2 < 16*(x + 4) x^2 - 2*x + 1 < 16*x + 64 x^2 - 18*x - 63 < 0 Равенство верно на интервале между корнями уравнения. Корни х1 = -3, х2 = 21, неравенство выполняется для -3 < х < 21, с учетом x >= 1 получаем 1 <= х < 21. Объединяем условия -4 <= х < 1 и 1 <= х < 21, получаем ответ: -4 <= х < 21.
gullieta
04.12.2021
Проследим изменение последней цифры при возведении числа 3 в степень: 3⁰ 1 3¹ 3 3² 9 3³ 27 3⁴ 81 3⁵ 243 3⁶ 729 3⁷ 2187 3⁸ 6461 Мы видим ЦИКЛИЧЕСКОЕ повторение последней цифры каждые 4 степени, т.е. 1 будет последней цифрой 4; 8; 12; 16 и т.д. степени. (100 - 0) : 4 = 25 БЕЗ ОСТАТКА. Значит, 1 будет последней цифрой и числа 3¹⁰⁰ после 25 циклов. (Можно также посчитать сколько циклов пройдет от числа 3⁴ до 3¹⁰⁰. 100 - 4 = 96; 96 : 4 = 24 (полных цикла). Т.е последняя 3¹⁰⁰ будет такой же, как и у 3⁴, т.е.1) ответ: 3¹⁰⁰ оканчивается на 1.
6,72
Объяснение:
32/15 * 3,15 = 100,8/15 = 6,72