Если обозначить С(m,n) - число сочетаний n из m, то есть
С(m,n) = m!/(n!*(m-n)!)
то общее число ВАРИАНТОВ вынуть 5 билетов из 100 равно C(100,5)
При этом, если известно, что в этих 5 билетах ровно к выгрышных и (5 - к) невыгрышных, то число разных вариантов сильно сокращается, и равно числу вариантов вынуть к из 20, умножить на число вариантов выбрать 5 - к из 80 (а почему умножить? на каждый вариант из C(20, к) сочетаний первой группы приходится С(80, 5 - к) второй..)
Поэтому вероятность попасть в благоприятный исход равна
С(20, к)*С(80, 5 - к)/C(100, 5);
1. в первом случае к = 5, 5 - к = 0, то есть
р = С(20,5)/С(100,5)
2. событие дополнительно событию, когда достали 5 невыгрышных билетов, то есть
р = 1 - С(80,5)/С(100,5)
3. р = С(20, 2)*С(80, 3)/C(100, 5);
Поделитесь своими знаниями, ответьте на вопрос:
С какими х значениями данные 3 числа образуют геометрическую прогрессию?
b6=0.81*(-q)^5
2.b1=6; q=2. Найти S(7)
S(7)=6(2^7-1)/(2-1)=762
3. b1=-40; b2=-20; b3=-10. Найти сумму n членов бесконечной прогрессии.
q=-20/-40=-10/-20=0.5
S(n)=-40(0.5^n-1)/(0.5-1)
S(n)=(80*0.5^n)-80
4. b2=1.2; b4=4.8. Найти S(8)
(b3)^2=1.2*4.8=5.76
b3=√5.76=2.4
q=4.8/2.4=2.4/1.2=2
b1=1.2/2=0.6
S(8)=0.6(2^8-1)/(2-1)
S(8)=153
5. Представить в виде обыкновенной дроби бесконечную периодическую дробь.
a) 0.(153)
k=3
m=0
a=153
b=0
0+(153-0)/999=153/999=51/333=17/111
b) 0.3(2)
k=1
m=1
a=32
b=3
0+((32-3)/90)=29/90