2π+4
Объяснение:
x²+y² ≤4x+4y-4
x²+y²-4x-4y+4 ≤0
(x²-4x+4)+(y²-4y+4 )≤4
(x-2)²+(y-2)² ≤2²-круг с центром O(2;2) , S=πR²=4π
y ≥ |x-2| -плоскость, ограниченная линиями y=x-2 и y=-(x-2).
Плоскость будет находится выше или на уровне линий(неравенство нестрогое)
Площадь фигуры-площадь пересечения круга и плоскости.
Разделим круг пополам, проведя линию y=2.Заметим, что верхняя часть круга полностью попала в плоскость.Нижняя же только частично.Если внимательно присмотреться, то можно заметить, что в плоскость попали только 2 прямоугольных треугольника.Найдем их площадь:
S=ab/2, где a,b-катеты.Но они равны радиусу круга, значит,
S=R^2/2=2
Таких треугольников два, значит, Sобщ=4
Складываем площадь верхнего полукруга и 2-х треугольников:
2π+4
Поделитесь своими знаниями, ответьте на вопрос:
Сравнить с вычислениями 0, 7×0, 8×0, 9 и 0, 7×0, 8×0, 9 Можно полностью и правильно
(-6, -5 )
Объяснение:
P.S забыла скобку фигурную слева, там где x = -2y-16, -5y=25
Если коротко объяснить решения, то это метод подстановки. Выражаем одну переменную через другую и подставляем ее в другое уравнение. Ещё можно решать через графический метод, но это достаточно долго, можно было привести через метод алгебраического сложения:
{x+2y=-16,
{2x-y=-7; | Будем действовать через игрек. Умножаем уравнение на 2.
{x+2y=-16,
{4x-2y=-14;
Теперь там где фигурная скобка ( она должна быть большой, захватывать два уравнения ), мы ставим знак + и складываем уравнения.
{x+2y=-16,
{4x-2y=-14;
_________
(x+4x)+(2y+(-2y))=-16+(-14)
2y у нас уходят, получаем:
5x=-30, | 5
x=-6.
Возвращаемся к системе уравнений, не забывая переписать x.
{x=-6,
{-6+2y=-16;
{x=-6,
{2y=-16+6;
{x=-6,
{2y=-10; | 2
{x=-6,
{y=-5.
И, собственно, получим тот же ответ. Алгебраическое сложение можно использовать и с минусом. ( если бы у нас вышло, например, x+2y=-16 и 4x+2y=-14. Тогда бы все, что поменялось, так это сложение мы бы заменили вычитанием.